2012 年 9 月,美国调查机构国家运输安全委员会 (NTSB) 根据 1993 年至 2012 年间调查的 12 起事故,向 FAA 和 EASA (21) 发出了两项安全建议 (20)。一架大型飞机的翼尖在滑行道上滑行时与另一架飞机或物体相撞。 NTSB 建议为所有大型飞机以及从驾驶舱不易看到翼尖的飞机安装摄像系统等防撞辅助设备,以帮助飞行员在滑行时确定翼尖路径。
在现代社会中,准确的时间至关重要。当人们见面时,几分钟的迟疑也许可以接受。然而,在未来,大量的机器将相互通信,例如,如果一辆自动驾驶汽车配备了一个设置不当的时钟,那么它可能会与其他汽车相撞。为了预见到这样的前景,在不久的将来,通过目前正在开发的光学晶格钟和其他设备,将实现更精确的时间。秒的定义也将更加准确。从日常生活到科学技术,时间主宰着我们的生活和社会。在这次采访中,我们将介绍生成和传播日本标准时间 (JST) 的时空标准实验室。
2009 年 2 月 10 日,一颗已报废的俄罗斯军用通信卫星 Cosmos 2251 与一颗活跃的美国商业通信卫星 Iridium 33 相撞。这是两颗在轨卫星首次意外相撞,此次事故产生了近 2,000 块太空垃圾,其中许多至今仍在低地球轨道运行。1 美国空军提供的合轨警告数据显示,铱星星座在那一周内还有 37 次可能的合轨,其中一次的概率比这次事件高出一个数量级。提供给铱星卫星运营商的数据不足以区分他们已经习惯的许多虚假合轨警告和更严重的风险,在这种情况下,运营商没有选择改变卫星的轨道。2 这起事件让商业太空公司有充分的理由寻找或参与替代的 SSA 数据和分析来源,以保护他们在太空中的资产并提高会合警告的准确性。铱星宇宙碰撞并不是唯一值得担忧的原因。随着越来越多的卫星进入轨道,太空物体之间的碰撞警告变得越来越普遍,而且许多涉及的物体已经绕地球运行了几十年,无法进行避让机动。例如,在 2021 年 4 月初,一颗报废的气象卫星可能与一个自 1973 年以来一直在轨道上运行的火箭体相撞。3 这次两人错过了对方,但情况不会总是这样。随着各国在军事和民用行动中越来越依赖太空系统,产生碎片碰撞的可能性对太空资产和国家安全构成了巨大威胁。跟踪在轨运行卫星和其他物体的能力变得越来越重要,这一任务领域被称为空间态势感知 (SSA)。SSA 能力对于保护太空资产至关重要,它们在安全方面发挥着重要作用,因为许多企业、政府和军队都依赖空间系统来执行基本职能。可靠的 SSA 使太空运营商能够更好地了解其他人在太空中做什么,这些信息可用于更好地保护自己的太空资产。随着 SSA 能力的不断提高,SSA 提供商的数量也在不断增加。本文重点介绍商业和国际 SSA 提供商日益增长的活动和能力以及未来几年预计出现的趋势。过去十年左右,许多商业 SSA 公司应运而生,它们现在已成为该领域的主要参与者,将 SSA 数据出售给其他商业公司或与政府合作避免碰撞。
1) 太空垃圾问题的背景:自太空时代开始以来,发射到太空的卫星和火箭数量不断增加,导致太空垃圾问题日益严重。地球轨道上现在布满了数千颗运行中的卫星,问题甚至延伸到了月球表面和小行星带。反卫星试验等事件加速了太空垃圾的扩散,这些事件导致现有卫星发生碰撞和碎裂,产生了更多的垃圾。太空垃圾的不断增长对太空任务提出了重大挑战。它存在与地球轨道上的贵重资产相撞的风险,每年需要进行多次防撞操作。
路线查找是一个常见问题,适用于许多抽象问题,例如帮助游戏中的虚拟角色决定下一步去哪里。这也是我们自己可以欣赏的问题:如何通过迷宫般的街道(嘿,它们可以表示为图表!)从维多利亚车站找到通往贝克街 221b 号的路。和无数可能的路线。与以往一样,有许多路线查找算法。其中一种从原点开始,并形成一个我们可以到达目的地的网络,同时从目的地开始,并形成一个我们可以回到原点的网络。这两个网络中第一个相撞的部分是最短路线。这大致就是您的卫星导航所做的。[ 我们的卫星导航系统似乎也有一种邪恶的幽默感,可能是某个心情不好的程序员放在那里的。 ]
这一切都融入了学院的研究与创新策略,我们的健康和可持续未来创新的研究支柱是由好奇心和发现的支柱交联和支持的,以及决定性的数据。这些基本领域涵盖了我们丰富的研究和创新生态系统的全部范围,在这些生态系统中,发现和创造力相撞,促进创新并推动整个社会的变革变革。交付这种愿景的核心是您,我们的大学研究社区 - 我们的支持人员,学生,学者和研究人员 - 简而言之,作为一所大学,我们认识到我们的成功取决于创造一个共同的环境,我们每个人都感到有价值并能够发挥我们的潜力,我们每个人都有我们每个人。
调查原因 2010 年 2 月 10 日,一架荷兰皇家航空公司的波音 737 客机从阿姆斯特丹史基浦机场的滑行道而非跑道上起飞。荷兰安全委员会对这一严重事件进行了调查,因为飞机在滑行道上起飞或降落时,速度过快,安全风险很高;滑行道上可能还有其他物体,例如其他飞机或车辆,这是其他用户意想不到的。如果起飞或降落的飞机与其中一个物体相撞,后果可能非常严重。因此,荷兰安全委员会进行了调查,以确定这种情况是如何发生的,以及应采取哪些措施,以防止将来再次发生类似事件。
MOONLIGHTER 任务选择在大气层内再入。MOONLIGHTER 航天器大部分时间将处于翻滚状态,平均横截面积约为 1,010 cm2。DAS 3.2.3 分析预测轨道寿命为 1.5 年,在航天器轨道寿命期间与直径大于 10 cm 的空间物体相撞的概率小于 0.000001,远低于所需的 0.001 阈值,人员伤亡风险为零,预计没有硬件可以在再入后幸存。有关更多详细信息,请参阅“Moonlighter DAS323 输出”附件。ODAR 第 10 页上的所有缓解措施在任务完成后仍然有效,因为卫星没有任务后配置——它一直处于活动状态并翻滚状态,直到再入。
问题概述 每年有数百万只鸟因高层建筑、导航信标、通讯塔和其他照明设施的户外照明而死亡。夜间人造光 (ALAN) 的吸引力会导致鸟类死亡,当候鸟被“捕获”时,它们会绕着光源转圈直到精疲力竭或与障碍物和其他鸟类相撞。户外照明的间接影响包括局部栖息地丧失或繁殖生产力下降以及与 ALAN 相关的导航错误导致能量储备耗尽,最终会影响生存和生产力。本情况说明书描述了 ALAN 对鸟类的捕获及其诱发因素,然后总结了最佳管理实践,并参考了将指导减少 ALAN 对个人、种群和脆弱物种影响的政策工具。