This research was conducted by the RIKEN TRIP Initiative, and was conducted by the Japan Society for the Promotion of Science (JSPS) Science Research Funded Funded Research Project (S), "New Generation Magnetic Induction in Magnetic Conductors (Principal Investigator: Tokura Yoshinori, 23H05431)," and the Basic Research (A) "Theoretical Research on Quantum Nonlinear Response (Principal Investigator: Naganaga Naoto, 24H00197)," and the Academic Change Area Research (A) "Theory of Chimeric Quasiparticles (Principal Investigator: Murakami Shuichi, 24H02231)," and the Japan Science and Technology Agency (JST) Strategic Creative Research Promotion Project CREST "Electronic Quantum Phase Control Using Nanospin Structures (Principal Investigator: Naganaga Naoto, JPMJCR1874)"这一事件得到了针对Skyrmion的新拓扑磁科学的支持(主要研究者:U Shuzhen,JPMJCR20T1)。主持人/机构计数器 *请与主持人联系以获取有关研究内容的信息。 Riken研究人员Max T. Birch,基础科学专科研究员,密切相关的量子传导团队,新兴材料科学中心,Riken Research Institute,团队负责人Tokura Yoshinori(东京/东京大学/东京大学教授)
具有钙钛矿和相关结构的第一行 (3d) 过渡金属氧化物 (TMOs) 为发现新奇的量子现象提供了肥沃的土壤,因为自旋、电荷、轨道和晶格自由度之间有着密切的相互作用 [1-3]。在铜氧化物中发现非常规高温超导性是最著名的例子之一 [4-6],因此它鼓励人们不断努力在 3d TMO 中寻找更多非常规超导系统。作为元素周期表中与铜最近的邻居,镍氧化物 (镍酸盐) 自 20 世纪 90 年代初以来就作为高温超导最有希望的候选者而备受关注 [7-9]。然而,直到最近才在该方向取得实验突破。 2019年,Li等人利用CaH 2通过钙钛矿相的拓扑还原反应成功合成了空穴掺杂的无限层Nd 1-x Sr x NiO 2 薄膜,并发现了𝑇 c 在9 ~ 15 K左右的超导性[10-12]。这一发现引发了许多关于铜酸盐和镍酸盐之间相同点和不同点的理论讨论[13-16]。后来发现,在12.1 GPa下,Pr 0.82 Sr 0.18 NiO 2 薄膜的𝑇 c 可以提高到30 K以上,这凸显了进一步提高超导镍酸盐𝑇 c 的潜力[17]。
几何受挫 (GF) 磁体由局部磁矩、自旋组成,其方向无法同时最小化它们的相互作用能。此类材料可能承载新颖的物质相,例如称为量子自旋液体的类流体状态。与所有固态系统一样,GF 磁体具有随机分布的杂质,其磁矩可能在低温下“冻结”,使系统进入自旋玻璃态。我们分析了 GF 材料中自旋玻璃转变的现有数据,发现了一个令人惊讶的趋势:玻璃转变温度随杂质浓度的降低而升高,并在以前未确定的“隐藏”能量尺度上达到无杂质极限的有限值。我们提出了一种情景,其中相互作用和熵的相互作用导致介质磁导率的交叉,有助于玻璃在低温下冻结。这种低温的“发光”相可能会掩盖甚至破坏相当干净的系统中广泛寻找的自旋液体状态。
6。S. Feng,C。Qin,K。Shang,S。Pathak,W。Lai,B。Guan,M。Clements,T。Su,G。Liu,H。Lu,R。P. Scott和S. J.225
摘要 - 理解大脑中复杂的神经相互作用对于推进诊断和治疗策略至关重要。帕金森病(PD)是由多巴胺不足引起的神经退行性疾病,会影响大脑大面积的网络水平性能。这项研究介绍了一种新型的脑电图(EEG)数据分析方法,研究了theta-gamma跨频率相位振幅耦合(PAC)的时间动力学(PAC),通过使用有向图网络。该方法是特别开发的,可以将PD患者与健康对照区分开。我们首先测量脑电通道对之间的PAC,以构建一个有向图,该图指示不同大脑区域之间的方向相互作用。然后,通过分析该图的结构特征,例如节点聚类和跨时间的有效路径长度,我们提出了图形特征作为诊断标记,以分类来自健康对照的PD患者。结果表明,PD患者和对照组的有向图有显着差异,路径长度和连通性模式的改变表明神经通信中断。这些发现强调了基于PAC的脑电图数据采用定向图分析的潜力,以发现由PD等神经系统疾病引起的神经机制的变化。
摘要。背景/目的:我们研究了可以对艾日布林或长春新碱 (VIC) 治疗有抗药性的 KBV20C 癌细胞产生敏化的药物,并评估了它们相关的作用机制。材料和方法:已知此类癌细胞过度表达 P-糖蛋白 (P-gp)。考虑到利血平 (P-gp 抑制剂) 在高血压患者中起调节作用,我们研究了 27 种低剂量血压调节药物对 VIC 耐药性 KBV20C 细胞的影响。这样做是为了确定可以在相对低剂量下重新用于使抗有丝分裂药物耐药性 KBV20C 细胞产生敏化的药物。进行了荧光激活细胞分选 (FACS)、膜联蛋白 V 分析、罗丹明摄取试验和蛋白质印迹分析,以进一步研究此类药物的作用机制。结果:我们发现低剂量胺碘酮、尼卡地平、卡维地洛或伐地那非联合治疗可高度增敏用艾日布林或VIC治疗的KBV20C细胞。这些药物与艾日布林或VIC联合使用时可降低细胞活力、增加G2期停滞并上调细胞凋亡。考虑到它们与艾日布林或VIC联合治疗均有增敏作用,我们推测它们可与其他抗有丝分裂药物联合使用以增敏耐药癌细胞。通过详细的定量分析,我们发现艾日布林与胺碘酮的增敏作用高于艾日布林与尼卡地平或艾日布林与卡维地洛的增敏作用。我们发现利血平具有最高的P-gp抑制活性,表明艾日布林或VIC-
融合细丝制造(FFF)或融合沉积建模(FDM)是多种领域中广泛使用的增材制造技术。然而,空隙,层之间的粘结差,而FDM Pa-Rameter通常会影响FDM打印的物体,从而改变其强度。研究人员已经研究了用于FDM打印的碳纳米管(CNT)复合材料,以提高其特征。本文提出了一个用于预测机械性能的CIENT三级计算模型,以及用于制备CNT融合的昀碗哀叹的独特淬火过程。通过广泛的参数分析揭示了FDM过程参数在机械性能上的ince。与纯ABS相比,注入CNT的复合材料表现出更好的键合和模量。实验研究表明,对于ABS和ABS-CNT而言,层高度的增加分别使弹性模量分别恶化了21.03%和27.92%。在pure ABS中,In ll密度分别从100%增加到75%和50%,将模量增加49.3%和69.6%。分别在0 - 0 0和0 - 90 0方向上打印的零件,分别为纯ABS和纳米复合材料发现了2.11%和1.7%的降低。计算结果与实验性昀碗nding非常吻合,在0.1 mm和0.2 mm的层高度的差异从10.15%到5.5%不等。对于其他参数(例如栅格方向),0 - 0 0和0 - 90 0的差分别为5.3%和6.9%。计算结果与实验结果一致,使其成为优化FDM打印和利用CNT以提高零件性能的有用工具。
成瘾的激励-敏化理论 (IST) 于 1993 年首次发表,该理论提出:(a)大脑中脑边缘多巴胺系统介导对成瘾药物和其他奖赏的激励动机(“想要”),但不介意在服用这些药物时产生享乐影响(喜欢);(b)一些人容易受到药物引起的中脑边缘系统长期敏化的影响,这种敏化会选择性地放大他们对药物的“想要”,而不会增加他们对同一种药物的喜欢。在这里,我们描述了 IST 的起源并评估了它 30 年后的地位。我们将 IST 与其他成瘾理论进行了比较,包括对手过程理论、成瘾习惯理论和冲动控制受损的前额叶皮质功能障碍理论。我们还讨论了多年来对 IST 的批评,例如渴求在成瘾中是否重要以及成瘾是否可以被描述为强迫性。最后,我们讨论了几种当代现象,包括激励敏感化在行为成瘾中的潜在作用、接受药物治疗的帕金森病患者中出现的类似成瘾的多巴胺失调综合征、注意力捕获和趋近倾向的作用、以及不确定性在激励动机中的作用。