应用。 [3] 然而,尽管取得了这些进展,这些执行器要实现大输出力和高重量标准化工作能力(以下称为“工作能力”)仍然具有挑战性。 [4] 这是因为组成材料较软且体积有限,难以储存和释放高机械能。 [2d,5] 目前,大多数微型软执行器的工作能力相对较低,在 10 –3 至 10 2 J kg − 1 范围内(图 S1,支持信息),[3b,6] 这使得它们无法用于潜在的医疗器械、操作和其他需要高工作能力的应用。 [7] 此外,现有磁控软执行器的最大输出力约为 60 µN。然而,许多医疗程序,如支架植入术 [8] 要求装置的输出力超过 1 N,这约为磁控软执行器最大输出力的 10软气动执行器同时提供了高机械性能和柔顺性,使其在强力操控中得到了广泛的应用。[9] 具体而言,尽管杨氏模量较小(约为 10 kPa),但这些执行器可以提供高工作能力(9 J g-1),比大多数已报道的执行器的性能高出约 10 1 –10 3 倍。尽管形状记忆合金具有类似的工作能力,但它是执行器的 10 6 倍
[6] X. Wang, J. Cai, Y. Liu, X. Han, Y. Ren, J. Li, Y. Liu and X.Meng, Nanotechnology 2021 , 32 , 115401. [7] Z. Zeng, D. Gau, G. Yang, Q. Wu, X. Ren, P.Zhang and Y. Li, Nanotechnology 2020 , 31 , 454001. [8] S. Yan, H. Li, J. Zhu, W. Xiong, R. Lei and X. Wang, Nanotechnology 2021 , 32 , 275402. [9] Y. Huang, H. Zhu, H. Zhu, J. Zhu, Y. Ren and Q. Liu, Nanotechnology 2021 , 32 , 295701. [10] S. Spence, W.-K. Lee, F. Lin 和 X.Xiao,纳米技术 2021, 32, 442003。 [11] J. McBrayer, CA Apblett, KL Harrison, KR Fenton 和 S. Minteer,纳米技术 2021。 [12] M. Winter,《物理化学杂志》2009,223,1395-1406。 [13] B. Xiao, F. Omenya, D. Reed 和 X. Li, 纳米技术 2021, 32, 422501。[14] F. Yuan, W. Zhang, D. Zhang, Q. Wang, Z. Li, W. Li, H. Sun, B. Wang 和 YA Wu, 纳米技术 2021, 32, 472003。[15] Y. Heng, T. Xie, X. Wang, D. Chen, J. Wen, X. Chen, D. Hu, N. Wang 和 YA Wu, 纳米技术 2020, 32, 095403。
摘要:钻石作为碳的最密集同质子,显示出一系列示例性的材料特性,这些特性从设备的角度来看具有吸引力。尽管钻石表现出高碳 - 碳键强度,但Ultrashort(飞秒)脉冲激光辐射可以为钻石晶格的高度局部内部分解提供足够的能量。在晶格分解上产生的碳结构较少,受到周围钻石基质的巨大压力,导致高度不寻常的形成条件。通过定制递送到钻石的激光剂量,可以证明可以创建具有不同电导性能的连续修改的内部轨道。除了确定了导致半导体和绝缘书面轨道的经过广泛报道的指导轨道之外。高分辨率透射电子显微镜(HRTEM)用于可视化发生的结构转换,并提供对不同传导方式的见解。HRTEM揭示了激光照射产生的高度多样化的纳米碳结构,其中包括许多用于不同所谓的diaphite络合物的特征,这些签名在陨石样品中已看到,并且似乎介导了激光诱导的钻石损坏。这项工作提供了对陨石中钻石和相关纳米碳相可能的形成方法的见解。关键字:钻石,激光处理,电子设备,石墨线,陨石
隶属关系1。英国伦敦大学学院机械工程系2。欧洲同步辐射设施,法国格勒诺布尔3。UCL心血管科学研究所,英国伦敦4。 Wellcome Sanger Institute,Wellcome Genome Campus,Hinxton,Cambridge,UK 5。 西门子卫生师,德国埃尔兰根6。 Laboratoire d'Anatomie des alpesfrançaises(Ladaf),Grenoble Alpes,Grenoble,F 7。 德国汉诺威汉诺威医学院病理学院8. 末期生物医学研究和阻塞性肺部病汉诺威(呼吸),德国肺研究中心(DZL),汉诺威,德国9。 病理研究所,亚兴医科大学,德国亚兴,10。 Helios大学诊所Wuppertal,Witten大学/HERDECKE,德国Wuppertal,DIV>病理与分子病理研究所,德国11。 Johannes Gutenberg-University Mainz Mainz的Johannes Gutenberg-University Mainz的功能与临床解剖研究所,德国12。 在英国迪德科特的哈威尔研究综合大楼 *通讯作者:约瑟夫·布鲁内特(j.brunet@ucl.ac.uk,+336093777101,地址:Joseph Brunet 71 AV。 des Marders,38000 Grenoble)UCL心血管科学研究所,英国伦敦4。Wellcome Sanger Institute,Wellcome Genome Campus,Hinxton,Cambridge,UK 5。西门子卫生师,德国埃尔兰根6。Laboratoire d'Anatomie des alpesfrançaises(Ladaf),Grenoble Alpes,Grenoble,F 7。德国汉诺威汉诺威医学院病理学院8.末期生物医学研究和阻塞性肺部病汉诺威(呼吸),德国肺研究中心(DZL),汉诺威,德国9。病理研究所,亚兴医科大学,德国亚兴,10。Helios大学诊所Wuppertal,Witten大学/HERDECKE,德国Wuppertal,DIV>病理与分子病理研究所,德国11。Johannes Gutenberg-University Mainz Mainz的Johannes Gutenberg-University Mainz的功能与临床解剖研究所,德国12。在英国迪德科特的哈威尔研究综合大楼 *通讯作者:约瑟夫·布鲁内特(j.brunet@ucl.ac.uk,+336093777101,地址:Joseph Brunet 71 AV。des Marders,38000 Grenoble)
摘要。我们研究了重子化学势 µ B 对平衡和非平衡状态下夸克胶子等离子体 (QGP) 特性的影响。平衡状态下 QGP 的描述基于动态准粒子模型 (DQPM) 中的有效传播子和耦合,该模型与格点量子色动力学 (QCD) 中解禁温度 T c 以上的部分子系统的状态方程相匹配。我们计算了(T,µ B)平面内的传输系数,例如剪切粘度η 与体积粘度 ζ 与熵密度 s 之比,即 η/s 和 ζ/s,并将其与 µ B = 0 时的其他模型结果进行比较。QGP 的非平衡研究是在部分子-强子-弦动力学 (PHSD) 传输方法中进行的,该方法扩展到部分子领域,通过明确计算在实际温度 T 和重子化学势 µ B 下评估的每个单独时空单元中部分子散射的总和微分部分子散射截面(基于 DQPM 传播子和耦合)。在相对论重离子碰撞的不同可观测量中研究了它们的 µ B 依赖性的轨迹,重点关注 7.7 GeV ≤ √ s NN ≤ 200 GeV 能量范围内的定向和椭圆流系数 v 1 、v 2。
X射线相对比微型计算机断层扫描使用同步加速器辐射(SR PHC-µCT)具有独特的3D成像功能,可视化人脑的微结构。其对未染色软组织的适用性是积极研究的领域。从组织块中获取图像,而无需按照常规组织学中的要求将其分为薄片,从而可以研究其自然3D空间中的微观结构。本文提出了一个详细的逐步指南,用于成像未染色的人脑组织,该分辨率是在Syrmep上实现的一些SR PHC-µCT的分辨率,即Elettra的硬X射线成像光束线,Italian同步器设施。我们介绍了血管和神经元如何出现在以5μm和1 µm Voxel大小获得的图像中出现的示例。此外,该提议的方案可用于研究重要的生物底物,例如神经苯胺或链氨基链酰胺。可以使用经典组织学方法验证的特定定制的分割工具来研究其空间分布。总而言之,使用所提出的方案(包括数据获取和图像处理)提供了SR PHC-µCT,提供了可行的手段,可以在3D中以细胞水平的细胞水平获取有关人脑解剖结构的信息。
摘要:为了有效地检测由虚拟现实环境引起的运动疾病,我们开发了一种专门设计用于视觉诱导的运动疾病的分类模型,采用了相位锁定值(PLV)功能连接矩阵和CNN-LSTM架构。该模型解决了传统机器学习算法的缺点,尤其是它们在处理非线性数据方面的功能有限。我们使用来自25名参与者的EEG数据构建了基于PLV的功能连接矩阵和网络拓扑图。我们的分析表明,视觉诱发的运动疾病显着改变了脑电图中的同步模式,尤其是影响额叶和颞叶。功能连接矩阵用作我们的CNN-LSTM模型的输入,该模型用于对视觉诱导的运动疾病的状态进行分类。该模型表现出优于其他方法的优越性能,从而达到了伽马频带中最高的分类精度。具体来说,二进制分类的最高平均准确度为99.56%,三元分类达到86.94%。这些结果强调了该模型的分类有效性和稳定性,使其成为帮助诊断运动疾病的宝贵工具。
polyactic酸(PLA)是一种可生物降解的聚合物,目前用于药物和手术设备。有人担心环乳酸(CPLA)是PLA合成的副产品,可以作为不良污染物引入人体。我们通过液相色谱质谱法(LC – MS)对CPLA七聚体(CPLA-7)进行了定量投资。我们发现CPLA-7与血清蛋白强烈结合,并且在常规剥夺后仅回收了62%的CPLA-7。因此,我们通过牛血清白蛋白(BSA)涂层色谱柱直接将血清注入LC-MS/MS系统,并发现CPLA-7的回收率提高到84%,并且检测(S/N = 3)和定量极限(S/N = 10和低于15%的相对标准偏差)为1.5和2.5和2.5和2.5 ng/g。我们得出结论,直接注射LC -MS/MS使用BSA列是血清中CPLA的一种简单有效的定量分析方法。©2008 Elsevier B.V.保留所有权利。
获得有关细胞形态和动力学的定量数据对于活细胞成像至关重要。许多细胞反应反映在细胞干质量的变化中(蛋白质,核酸,脂质的含量,…)。细胞干质量是评估细胞状况的敏感参数。细胞干质量的变化可以信号在细胞代谢,生存力,独特的细胞行为和罕见细胞事件中的变化,否则这些事件将需要使用荧光成像或保持未涂料。QPI可以直接测量Pg/μm²中的细胞干质量,因此可以完全非侵入性地对敏感细胞参数进行可靠的分析。使用QPI,可以探索以前看不见的动态变化。
蓝相(BPS)是手性液晶,具有拓扑缺陷的常规晶格。通过分子自组装,BPS独特的软性对称性提供了许多与常规液晶不同的优秀特性。,已经开发出化学图案的表面,以将BP的自组装引导为具有所需晶格方向的完美单晶,从而进一步受益于光子学和智能电子光学设备的设计。然而,BP的相关长度(定义为保持相同BP时间端方向的距离,这是一个必不可少的设计参数)迄今仍未透露。在这里,纳米级化学模式设计的替代平面和同型锚固条纹的设计允许系统地研究沿不同动力学途径的图案化区域以外的BP的生长,以及相关长度的时间演化。对相关长度的新理解可用于指导BPS宏观的单晶的合理设计,该设计依赖于减少的图案表面,这为基于BPLC的新功能和开发提供了令人兴奋的材料,以将基于BPLC的功能和开发用于高级光学设备或软材料设计或软材料设计。