,我们对连续变量量子键分布的渐近秘密密钥率建立了一个分析下限,并通过对相干状态进行任意调制。以前,此类边界仅适用于具有高斯调制的协议,并且在简单的相移 - 键调制的情况下存在数值界限。后者是作为凸优化问题的解决方案获得的,我们的新分析结合匹配Ghorai等人的结果。(2019),最多可达数值精度。由于其大量相干状态,无法使用先前的技术来分析更相关的正交振幅调制(QAM)情况。我们的界限表明,相对较小的星座大小(例如64个状态)基本上足以获得接近真正的高斯调节的性能,因此是大规模部署连续可变量子键分布的有吸引力的解决方案。当调制由任意状态组成,不一定是纯净时,我们也会得出相似的界限。
引言 魔鬼点(DP)和例外点(EP)描述依赖于参数的系统简并性1,2。EP指具有合并特征态的非厄米系统的简并性,在具有增益和损失的系统中很常见,例如宇称时间对称系统3 – 5。DP表示具有两个正交特征态的厄米系统的简并性。与具有增益和损失的EP相比,DP具有更高的实用性,提供了具有可控相移的几何相,并为研究拓扑或量子DP行为引入了新方法6 – 11。因此,处于DP位置的光子结构中的光子在量子信息和量子计算中具有潜在的应用12 – 15。同时,光子结构中的有源发射器对于相干电子 – 光子界面实现量子信息处理至关重要
这样的措施将有助于对现象的比较研究,并有助于阐明通风策略的影响。它最终也可能成为指导支持设置的临床用途参数。以前的工作使用了不同基于EIT的pendelluft措施。例如,Sang等人(2020)使用了区域相移的度量(定义为全球和区域阻抗时间曲线之间的时间差)和振幅差异(定义为所有区域潮汐变化和全局潮汐变化之间的阻抗差异)。Chi等人(2022)将Pendelluft的幅度定义为所有区域潮汐阻抗变化和全局潮汐阻抗变化之间的阻抗差异。在Liu等人(2024)中,pendelluft的发生定义为当潮汐变化幅度超过全球潮汐阻抗变化的2.5%时。在审查中,Su等人(2022)总结了Pendelluft的另外三项基于EIT的措施。我们认为,这些措施是有用的,但也是Pendelluft以外的现象的衡量标准。我们打算我们的参数
摘要背景:利用低强度电压源(<10 V)产生的非电离电场来控制恶性肿瘤生长作为一种癌症治疗方式的潜力越来越大。在肿瘤内或肿瘤附近植入多个电极施加低强度电场的方法被称为肿瘤内调制疗法(IMT)。目的:本研究探讨了先前建立的 IMT 优化算法的进展,以及针对特定患者 IMT 的定制治疗计划系统的开发。通过在脑模型上实施完整的优化流程,包括机器人电极植入、术后成像和治疗刺激,证明了治疗计划系统的实用性。方法:3D Slicer 中的集成计划流程从导入和分割患者磁共振图像(MRI)或计算机断层扫描(CT)图像开始。分割过程是手动的,然后是半自动平滑步骤,通过应用选定的过滤器可以平滑和简化分割的大脑和肿瘤网格体积。通过选择插入和尖端坐标,在患者 MRI 或 CT 上手动规划电极轨迹,以选择所选电极数量的插入和尖端坐标。然后可以使用自定义的半自动 IMT 优化算法优化电极尖端位置和刺激参数(相移和电压),其中用户可以选择处方电场、电压幅度限制、组织电特性、附近危及的器官、优化参数(电极尖端位置、单个接触相移和电压)、所需的场覆盖百分比和场适形度优化。显示优化结果表,并将得到的电场可视化为叠加在 MR 或 CT 图像上的场图,并显示大脑、肿瘤和电极的 3D 渲染。优化后的电极坐标被传输到机器人电极植入软件,以便规划电极并随后按照所需轨迹植入。结果:开发了一种 IMT 治疗计划系统,该系统结合了患者特定的 MRI 或 CT、分割、体积平滑、电极轨迹规划、电极尖端定位和刺激参数优化以及结果可视化。所有以前在不同软件平台上运行的手动管道步骤都合并到一个半自动化的基于 3D Slicer 的用户界面中。在术前计划、机器人电极植入和术后治疗计划中,对整个系统实施的脑模型验证均取得成功,以根据患者情况调整刺激参数
Richard Feynman [1]在他的演讲中,在1981年在MIT上举行的计算物理学的第一次讲话中,观察到,以有效的方式对经典概率计算机进行模拟的一般量子进化似乎是不可能的。 他指出,与自然进化相比,量子进化的任何经典模拟似乎都涉及时间放缓,因为以经典术语描述不断发展的量子状态所需的信息量会呈指数呈指数增长。 但是,Feynman并没有将这一事实视为障碍,而是将其视为机会。 他认为,如果它需要太多的计算才能确定复杂的多粒子间间实验中会发生什么,那么建立这样的实验并测量结果的行为就是进行复杂的计算。 的确,所有量子多部分干涉仪都是量子组合,并且一些有趣的计算问题可能基于估计这些干扰器中的内相移。 这种方法导致了量子算法的统一图,并已由Cleve等人详细讨论。 [2]。 让我们从量子间间的教科书示例开始,即双缝实验,在更现代的版本中,它可以按照手机干涉法进行改写(见图,请参见图。 1)。Richard Feynman [1]在他的演讲中,在1981年在MIT上举行的计算物理学的第一次讲话中,观察到,以有效的方式对经典概率计算机进行模拟的一般量子进化似乎是不可能的。他指出,与自然进化相比,量子进化的任何经典模拟似乎都涉及时间放缓,因为以经典术语描述不断发展的量子状态所需的信息量会呈指数呈指数增长。但是,Feynman并没有将这一事实视为障碍,而是将其视为机会。他认为,如果它需要太多的计算才能确定复杂的多粒子间间实验中会发生什么,那么建立这样的实验并测量结果的行为就是进行复杂的计算。的确,所有量子多部分干涉仪都是量子组合,并且一些有趣的计算问题可能基于估计这些干扰器中的内相移。这种方法导致了量子算法的统一图,并已由Cleve等人详细讨论。[2]。让我们从量子间间的教科书示例开始,即双缝实验,在更现代的版本中,它可以按照手机干涉法进行改写(见图1)。
研究了高反射率相移掩模 (HR-PSM) 对 36nm 间距逻辑接触孔进行图案化的方法,并在成像性能 (ILS、LCDU、MEEF 等) 和曝光剂量方面与其他掩模吸收器进行了比较。为此,使用了晶圆数据校准的 CAR 和 MOR EUV 光刻胶模型。我们的模拟结果表明,HR-PSM 在较大的掩模 CD 下会产生暗场图像。但是,随着掩模 CD 的减小,图像的色调会发生反转,并且可以生成具有良好对比度的明场图像。基于这一观察,提出了一种 HR-PSM 加 MOR 图案化方法,用于最小间距等于 36nm 的全间距逻辑接触孔应用。我们表明,这种方法在全间距性能方面表现出多种增强,并且使我们能够使用 0.33NA EUV 扫描仪将逻辑接触孔的实际分辨率扩展到 40nm 间距以下。
我们提出了一种将传统光学干涉测量装置映射到量子电路中的方法。通过模拟量子电路,可以估计存在光子损失时马赫-曾德尔干涉仪内部的未知相移。为此,我们使用贝叶斯方法,其中需要似然函数,并通过模拟适当的量子电路获得似然函数。比较了四种不同的确定光子数状态(均具有六个光子)的精度。我们考虑的测量方案是计算干涉仪最终分束器后检测到的光子数量,并使用干涉仪臂中的虚拟分束器来模拟光子损失。我们的结果表明,只要光子损失率在特定范围内,所考虑的四种确定光子数状态中的三种可以具有比标准干涉极限更好的精度。此外,还估计了装置中四种确定光子数状态的 Fisher 信息,以检查所选测量方案的最优性。
首字母缩略词 解释 ANSSI 法国国家信息系统安全局 API 应用程序编程接口 BS 基站 BSI 德国联邦信息技术安全局 COW 相干单向 CV 连续变量 DD 数据检测器 DPR 分布式相位参考 DPS 差分相移 DV 离散变量 ECC 椭圆曲线密码术 ETSI 欧洲电信标准协会 FIPS 联邦信息处理标准 GUI 图形用户界面 KEM 密钥封装机制 KME 密钥管理实体 KMS 密钥管理系统 LMS Leighton-Micali 基于哈希的签名 MD 监控检测器 NIST 法国国家标准与技术研究所 PFX 个人信息交换 PKCS 公钥密码标准 PNS 光子数分裂 PQC 后量子密码术 QBER 量子比特误码率 QKD 量子密钥分发 QMS 量子管理系统 RSA Rivest-Shamir-Adleman SAE 安全应用实体 UE 用户设备 WDM 波分复用
可编程的光子集成电路正在成为量子信息处理和人工神经网络等应用的有吸引力的平台。但是,由于商业铸造厂缺乏低功率和低损耗相变的速度,当前可编程电路的尺度能力受到限制。在这里,我们在硅光子铸造厂平台(IMEC的ISIPP50G)上演示了具有低功率光子微电体系统(MEMS)的紧凑相位变速器。该设备在1550 nm处达到(2.9π±π)相移,插入损耗为(0.33 + 0.15 - 0.10)dB,AVπ为(10.7 + 2.2 - 1.4)V,和(17.2 + 8.8-4.3)的Lπ。我们还测量了空气中1.03 MHz的致动带f -3 dB。我们认为,我们对硅光子铸造型兼容技术实现的低损坏和低功率光子磁化相位变速杆的证明将主要的障碍提升到可编程光子集成电路的规模上。©2021美国光学协会根据OSA开放访问出版协议的条款
抽象定量相成像(QPI)从强度测量中恢复了光的精确波前。可以从这些量化的相移中提取半透明微观体的地形和光密度图。我们使用氮化硅倍曲底金属固有的色差束在相干束束的尖端进行定量相成像。我们的方法利用光谱多路复用来使用彩色摄像头从单个捕获中的多个散焦平面恢复相位。我们的0.5 mm光圈金属量具有28°视图和0.2π相分辨率(空气中的〜0.1λ)显示出可靠的定量相成像能力,用于内窥镜束束的实验。由于光谱功能直接在成像晶状体中编码,因此金属既充当聚焦元件,又是光谱过滤器。使用简单的计算后端的使用将实现实时操作。在据报道的基于金属的QPI中,完全缓解了内窥镜检查相时成像方法的关键局限性。