典型的图像处理任务是识别两个相邻区域之间边界(强度变化)。从经典上讲,边缘检测方法依赖于不同类型的滤膜对图像梯度的计算。因此,所有经典算法都需要至少O(2 n)的计算复杂性,因为每个像素都需要处理(Yao,Wang,Liao,Chen和Suter,2017)。已经提出了一种量子算法,该算法应该与现有边缘提取算法相比提供指数加速(Zhang,lu和gao。2015)。但是,该算法包括一个复制操作和一个量子黑框,用于同时计算所有像素的梯度。对于这两个步骤,目前都没有有效的实现。提出了一种高效的量子算法,称为量子Hadamard Edge检测,以找到边界(Yao,Wang,
本飞行测试计划确定了在正常运行条件下验证 VDL 模式 3 SARP 要求所要使用的任务和程序。飞行测试将涉及空对空和空对地语音和数据通信。还将评估在各种 VDL 模式 3 系统配置中配置的相邻区域地面站之间的互操作性。所有无线电(数字和模拟)传输都应受到监控和记录,以便进行后期处理。现有的导航设备(如 Nike 雷达和全球定位系统 (GPS))将提供飞机跟踪和时间戳功能。空中交通管制员将在场,以访问系统功能和无线电传输的保真度。其中包括一份表格化的验证时间表和测试设备清单。
类别选择性是感知脑区组织的基本原则。人类的枕颞皮质细分为优先对面部、身体、人工制品和场景作出反应的区域。然而,观察者需要结合不同类别的物体信息,才能形成对世界的连贯理解。这种多类别信息是如何在大脑中编码的?通过利用 fMRI 和人工神经网络研究男性和女性受试者大脑区域之间的多变量相互作用,我们发现角回与多个类别选择性区域表现出联合统计依赖性。相邻区域对场景和每个其他类别的组合表现出影响,这表明场景提供了结合世界信息的背景。进一步的分析揭示了跨不同类别子集编码信息的皮质区域图,表明多类别信息不是编码在单个集中位置,而是编码在多个不同的大脑区域中。
该地点和区域的特征申请站点的尺寸约为11.1公顷,位于贝尔法斯特上纽敦瓦尔斯路的Stormont Estate的Lands。主要的议会大楼及其相关花园位于现场,但在更广阔的房地产的北部和西部。遗产的东部包括体育设施和许多政府办公室和停车场。该提案位于庄园的东南部。该地点在贝尔法斯特在Buap的开发范围内,在白色未分区的土地上,与“景观,娱乐或便利设施”的区域紧密相邻。BARD BMAP(V2004)将该站点标识为城市的和解限额和Stormont Office Node(参考BT019)。该站点不会延伸到现有开放空间的相邻区域。在BMAP中,该网站被划分为Stormont Office Node(参考bt012),它在当地的景观政策区域和历史悠久的公园,花园和德姆斯。西北地区的一小部分延伸到局部自然保护重要性的地点(BT084/27)。
现代铁路系统需要一个可靠的框架,以优先考虑安全,效率和可持续性。这种集成的方法结合了先进的火车保护机制,智能平台技术以及通过涡轮机的可再生能源产生,以创建更安全,更环保的铁路运输环境,该系统通过控制火车速度和运动来防止事故,并在必要时自动应用制动器。安装在火车和轨道上的传感器提供有关火车性能,轨道状况和使用机器学习算法的潜在危害的连续数据,该系统可以分析数据以预测潜在的事故,从而使积极的措施可以建立一个可靠的通信网络,以连接火车,控制中心,并确保对新兴的紧急响应。小型涡轮机可以安装在火车平台或相邻区域上,以利用高速行驶的火车产生的风能。这种可持续的能源可以为平台系统供电并提高整体效率。整合电池系统以存储生成的能源可以提供可靠的电源,尤其是在高峰使用时间
摘要 — 本文介绍了用于 Ka 波段单脉冲雷达跟踪的调制超表面天线的设计、制造和测试。天线由圆形、薄接地介电层组成,该介电层由形状和大小经过调制的金属贴片纹理印刷而成。贴片层可以建模为空间可变的电容阻抗片,它与接地平板贡献一起提供整体调制电感边界条件。天线孔径被分成四个相同的角象限,每个角象限在由单个单极子发射器激发时都会辐射独立的宽边波束。四个发射器中的每一个都会激发 TM 圆柱形表面波 (SW),该波被超表面逐渐转换为漏波 (LW)。通过适当设计超表面调制,4 个子孔径被虚拟分开。为此,校准了 LW 衰减常数以充分释放每个单独的 SW,从而防止相邻区域之间的相互作用。因此,印刷结构不受任何物理分离的限制,而仅受等效边界条件的连续变化的限制。通过将源激励与简单的相位方案相结合,可获得单脉冲型线性偏振光束。值得注意的是,该解决方案不会影响结构的整体轻便性、低轮廓、馈源简单性和低制造成本,这相对于更传统的基于波导的解决方案具有固有优势。
管制空域被划分为多个区域。航路区域是距离机场至少 50 公里的空域,相关空中交通管制员负责该区域。空中交通管制员必须接受飞机进入其区域;检查飞机,向飞行员发出指令、许可和建议,并将飞机移交给相邻区域或机场。当飞机离开分配给空中交通管制员的空域时,飞机的控制权将移交给控制下一个区域的空中交通管制员(或塔台空中交通管制员)。与许多现实世界的复杂系统一样,这种环境对操作员提出了多个并发要求,事实上,在航路空中交通管制环境中,空中交通管制员面临的系统包括来自不同方向、以不同速度和高度飞往不同目的地的大量飞机 [1]。空中交通管制员有两个主要目标。主要目标是确保管辖范围内的飞机遵守国际民用航空组织 (ICAO) 规定的分离标准。例如,最常见的间隔标准之一要求雷达控制下的飞机垂直间隔至少 1,000 英尺,水平间隔至少 5 海里。次要目标是确保飞机有序、迅速地到达目的地。这些目标要求空中交通管制员执行各种任务,包括监控空中交通、预测间隔损失(i
最近,人们研究了从二维介质和单电子转移形成单光子源的可能性 [1–4]。其想法是通过 pn 结以受控方式注入电子,从而根据需要确定性地产生单光子脉冲。横向 pn 结可由毗邻二维空穴气区域的二维电子气区域形成。电子在穿过 pn 结后与 p 型区域的空穴复合时发生单光子发射 [4]。人们在 III-V 半导体异质结构(特别是 GaAs/AlGaAs 系统)中对不同类型的横向 pn 结器件进行了多项研究。在聚焦离子分子束外延法中,两个相邻区域选择性地掺杂 Si 和 Be,以创建 n 型区域和 p 型区域 [5]。在面再生长法中,p 型和 n 型区域都是通过掺杂在 GaAs 表面不同面上的 Si 来创建的 [6, 7]。Cecchini 等人通过蚀刻掉部分 Be 掺杂的 AlGaAs 并形成 n 型 Au-GeNi 接触,从 p 型衬底形成了横向 pn 结。[8–10]。Dai 等人使用两个感应栅极来形成二维电子和空穴气体 [11, 12]。Helgers 等人使用 GaAs 衬底上的量子线作为通道,利用表面声波传输光激发电子和空穴 [13]。在其他类型的材料系统中也可以形成横向 pn 结,
在同一场景中捕获不同的强度和光线的方向,光场(LF)可以将3D场景提示编码为4D LF映像,该图像具有广泛的范围(即,捕获后的重新集中和深度感测)。LF图像超分辨率(SR)旨在通过LF相机传感器的性能来改善图像分辨率。尽管现有方法取得了令人鼓舞的结果,但这些模型的实际应用是有限的,因为它们不够轻巧。在本文中,我们提出了一个名为LGFN的轻量级模型,该模型集成了不同视图的Lo local和全局特征以及LF Image SR的不同频道的特征。具体而言,由于不同的子孔径图像中相同像素位置的相邻区域表现出相似的结构关系,因此我们设计了一个基于CNN的轻质CNN特征表演模块(即DGCE),以更好地通过特征调节提取局部特征。同时,随着LF图像中边界之外的位置呈现出很大的差异,我们提出了一个有效的空间注意模式(即ESAM)(即ESAM),使用可分解的大内核卷积来获得扩大的接受场,并获得了一个扩大的接收场和效率的通道注意模块(即,Ecam)。与具有较大术语的现有LF图像SR模型相比,我们的模型的参数为0.45m,拖失术为19.33G,这已经达到了竞争效果。进行消融研究的实验实验证明了我们提出的方法的效率,该方法对NTIRE2024光场超级分辨率挑战的赛道2忠诚度和效率排名,这是赛道1 Fidelity的第七名。
“1999 年 12 月 9 日发布的《密歇根州公共供水取水口》出版物中列出的该州所有地表水均被指定为公共供水水源,并在取水点和部门认为有必要确保保护的相邻区域受到保护。此外,所有密歇根州五大湖和连接水域的水域均应符合 R 323.1057(4) 规定的饮用水人类癌症和非癌症值。满足饮用水人类癌症和非癌症值的要求不适用于支流与五大湖、连接水域或已指定用作公共供水水源的水体混合的区域中的支流污染物负荷,除非 1999 年 4 月 2 日的取水口位于该地区。”将地表水指定为公共供水用途非常重要,因为旨在保护饮用水相关人类健康的标准的应用可能比其他非饮用水标准更为严格。这可能会影响国家污染物排放消除系统 (NPDES) 计划下点源排放的限制,以及国家污染物排放法第 201 部分“环境修复”规定的受污染排放地下水的排放限制。评估该州的地表水是否支持其指定用途,以及确定需要达到每日最大总负荷才能恢复用途的水体也很重要。本政策提供 EGLE 认为对确保公共供水保护所必需的公共供水取水点相邻区域的信息。定义关键评估区 (CAZ):地表水取水口周围可能敏感的地理区域,定义为从取水口结构到海岸线和内陆的区域。根据距离海岸的垂直距离或取水管道的长度以及取水结构的水深,取水敏感度分为三种(高、中、低),分别与三种 CAZ 大小相关:3,000 英尺、2,000 英尺和 1,000 英尺。建立 CAZ 的概念和协议