• 设计构建器报告通过创建设计策略和设计模式的全面、详细端到端映射,为客户提供网络设备、功能和关系的可视化表示,以帮助发现弱点并简化网络可支持性。一 (1) 份设计构建器报告提供审计结果和与设计相匹配的发现节点、相邻节点、缺失节点和链接的概述,以及通过检查前十 (10) 项策略和最多五十 (50) 台客户设备(所有设备仅运行以下软件之一)提出的建议:Cisco IOS 软件、Cisco IOS XE 软件、Cisco XR 软件、Cisco Nexus OS 软件。
摘要:网络化多传感器用于解决机动目标跟踪问题。为避免非线性动态函数的线性化,获得更准确的机动目标估计,提出了一种用于机动目标跟踪的自适应信息加权协同滤波器。利用无迹变换计算伪测量矩阵,以利用测量的信息形式,这是协同迭代所必需的。为提高机动目标跟踪精度并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在各个动态模型的相邻节点之间应用信息加权协同协议。基于多个模型的后验概率,通过对模型条件估计的加权组合来获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网估计一致性方面具有优异的性能。
摘要:网络化多传感器用于解决机动目标跟踪问题。为避免非线性动态函数的线性化,获得更准确的机动目标估计,提出了一种用于机动目标跟踪的自适应信息加权协同滤波器。利用无迹变换计算伪测量矩阵,以利用测量的信息形式,这是协同迭代所必需的。为提高机动目标跟踪精度并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在各个动态模型的相邻节点之间应用信息加权协同协议。基于多个模型的后验概率,通过对模型条件估计的加权组合来获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网估计一致性方面具有优异的性能。
摘要:网络化多传感器用于解决机动目标跟踪问题。为避免非线性动态函数的线性化,获得更准确的机动目标估计,提出了一种用于机动目标跟踪的自适应信息加权协同滤波器。利用无迹变换计算伪测量矩阵,以利用测量的信息形式,这是协同迭代所必需的。为提高机动目标跟踪精度并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在各个动态模型的相邻节点之间应用信息加权协同协议。基于多个模型的后验概率,通过对模型条件估计的加权组合来获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网估计一致性方面具有优异的性能。
摘要:网络化多传感器用于解决机动目标跟踪问题。为了避免非线性动态函数的线性化,并获得更准确的机动目标估计,提出了一种用于机动目标跟踪的新型自适应信息加权共识滤波器。利用无味变换计算伪测量矩阵,以利用测量的信息形式,这是共识迭代所必需的。为了提高机动目标跟踪精度并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在每个动态模型的相邻节点之间应用信息加权共识协议。基于多个模型的后验概率,通过模型条件估计的加权组合获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网络估计一致性方面具有优异的性能。
摘要:网络化多传感器用于解决机动目标跟踪问题。为避免非线性动态函数的线性化,获得更准确的机动目标估计,提出了一种用于机动目标跟踪的自适应信息加权协同滤波器。利用无迹变换计算伪测量矩阵,利用测量的信息形式,为协同迭代提供必要的信息。为提高机动目标跟踪精度,并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在各个动态模型的相邻节点之间应用信息加权协同协议。基于多个模型的后验概率,通过模型条件估计的加权组合获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网估计一致性方面具有优越的性能。
边界网关协议(BGP)是Internet的标准域间路由协议,它传达了网络层的可及性信息,并建立了通往不同目的地的路由。BGP协议表现出安全设计缺陷,例如无条件的信任机制以及BGP相邻节点对同行的BGP路线公告的默认接受,很容易触发前缀劫持,路径伪造,路线泄漏和其他BGP安全威胁。同时,依靠公共密钥基础架构的传统BGP安全机制面临单一失败和单个信任点等问题。区块链的权力下放,反侵略和可追溯性优势为构建安全和值得信赖的域间路由机制提供了新的解决方案想法。在本文中,我们详细概述了BGP协议的特征,分解BGP安全威胁及其原因。此外,我们分析了传统的BGP安全机制的缺点,并全面评估了基于区块链的解决方案,以解决上述问题,并验证基于区块链的BGP安全方法在缓解BGP安全威胁时的可靠性和有效性。最后,我们讨论了BGP安全问题和未来研究的概述前景所带来的挑战。
在任何大型无线网络上频率协调的证明都是必不可少的,因为需要重复使用和降低噪声来正确扩展网络跨最后一英里。虽然某些联邦调节的系统,例如6GHz中的自动频率协调(AFC),而CBR中的Spectrum访问系统(SAS)解决了一些频率重复使用问题,但在60GHz中需要一个无信任的解决方案。Dawn将使用一种放入机制,通过该机制,需要通过该机制锁定令牌,以便在点对点部署中对特定频率通道的独家访问。相邻节点将扫描相关的频率以验证适当的通道利用率并通过自动智能合约获得奖励。基金会将资助访问混乱数据并向网络提出地理信息系统(GIS)挑战。节点将获得所需的杂物数据的加密子集,以验证BN或DN的无线传播,并通过自动化的智能合约来奖励令牌,以证实预期的RSSI和其他无线指标。基于此无信任的无线传播模型(无线热图),将使用某些信号阈值来确定哪些通道可根据节点的位置存放。
在任何大型无线网络上频率协调的证明都是必不可少的,因为需要重复使用和降低噪声来正确扩展网络跨最后一英里。虽然某些联邦调节的系统,例如6GHz中的自动频率协调(AFC),而CBR中的Spectrum访问系统(SAS)解决了一些频率重复使用问题,但在60GHz中需要一个无信任的解决方案。Dawn将使用一种放入机制,通过该机制,需要通过该机制锁定令牌,以便在点对点部署中对特定频率通道的独家访问。相邻节点将扫描相关的频率以验证适当的通道利用率并通过自动智能合约获得奖励。基金会将资助访问混乱数据并向网络提出地理信息系统(GIS)挑战。节点将获得所需的杂物数据的加密子集,以验证BN或DN的无线传播,并通过自动化的智能合约来奖励令牌,以证实预期的RSSI和其他无线指标。基于此无信任的无线传播模型(无线热图),将使用某些信号阈值来确定哪些通道可根据节点的位置存放。
量子状态的产生和验证是量子信息处理的基本任务,伊朗人,Natarajan,Natarajan,Nirkhe,Rao和Yuen [CCC 2022],Rosenthal和Yuen和Yuen [ITCS 2022],Metger和Yuen,Metger和Yuen [focs 2023] [focs 2023]遵守了任期状态的统治状态。本文从量子分布式计算的角度研究了这一概念,尤其是分布式量子Merlin-Arthur(DQMA)协议。我们首先在一条线上引入一项新型任务,称为州生成,带有分布式输入(SGDI)。在此任务中,目标是生成量子状态u | ψ⟩在该行的最右边节点,其中| ψ⟩是在最左节点处给出的量子状态,u是一个单位矩阵,其描述分布在线的节点上。我们为SGDI提供了DQMA协议,并利用此协议来构建Naor,Parter和Yogev [Soda 2020]研究的集合平等问题的DQMA协议,并通过显示此问题的经典下限来补充我们的协议。我们的第二个贡献是DQMA协议,基于Zhu和Hayashi [物理评论A,2019]的最新工作,以在没有量子通信的网络的相邻节点之间创建EPR对。作为此DQMA协议的应用,我们证明了一个一般结果,显示了如何将任意网络上的任何DQMA协议转换为另一个DQMA协议,在该协议中,验证阶段不需要任何量子通信。