脑机接口 (BCI) 是一种新兴的交互式通信方法,通过解码大脑活动产生的信号,实现对假肢和外部设备的神经控制,以及中风后运动康复。这种最先进的技术有可能彻底改变生活的各个方面,并显着提高整体生活质量。BCI 具有广泛的应用范围,从医疗援助到人类增强(Ahmed 等人,2022 年;Altaheri 等人,2023 年)。通常,脑电图 (EEG) 信号反映大脑的电活动,并通过在头皮上放置电极阵列来非侵入式地记录。获得真实值(时间和通道)二维 EEG 信号矩阵使人与外部设备之间的直接通信成为可能(Graimann 等人,2010 年)。运动想象 (MI) 是一种思考如何移动身体的某个部位而不移动身体的活动。基于 EEG 的 MI 活动已广泛应用于车辆控制、无人机控制、环境控制、智能家居、安全和其他非医疗领域(Altaheri 等人,2023 年)。然而,解码 MI-EEG 信号仍然是一项具有挑战性的任务。在此任务中,其他生理信号(例如面部肌肉活动、眨眼和环境中的电磁干扰)会污染记录的 MI-EEG 信号并导致信噪比低(Lotte 等人,2018 年)。MI-EEG 模式的个体差异受到参与者大脑结构和功能差异的影响。此外,EEG 系统在信号通道之间表现出一定程度的相关性,这进一步使信号处理过程复杂化(Altaheri 等人,2022 年)。在对 EEG 信号进行分类和识别的传统方法中,通常依赖于领域特定知识。这导致人们更加关注开发有效的特征提取和分类技术,这主要是由于 EEG 信号固有的低信噪比( Huang et al., 2019 )。人们通常使用各种特征提取方法,包括独立成分分析( Barbati et al., 2004 ; Delorme and Makeig, 2004 ; Porcaro et al., 2015 ; Ruan et al., 2018 )、小波变换( Xu et al., 2018 )、共同空间模式( Gaur et al., 2021 )和经验模态分解( Tang et al., 2020 )。在对 EEG 信号进行预处理后,从处理后的信号中提取基本特征并输入分类器以确定输入实例的类别( Vaid et al., 2015 )。传统的特征提取方法通常涉及手工设计的特征提取器,例如滤波器组共享空间模式 (FBCSP) (Ang et al., 2008) 或黎曼协方差 (Hersche et al., 2018) 特征。Ang et al.(2012)使用滤波器组公共空间模式(FBCSP)算法来优化MI-EEG上公共空间模式(CSP)的受试者特定频带,然后采用基于互信息的最佳个体特征(MIBIF)算法和基于互信息的粗糙集约简(MIRSR)算法从信号中提取判别性的CSP特征。最后,我们使用CSP算法进行分类并获得了良好的性能。值得注意的是,所有这些步骤都非常耗时。虽然传统方法通过预处理方法提高了EEG信号的信噪比,但从不同时间戳和受试者采集的EEG信号通常
全球气候变化是二十一世纪最严重的环境问题之一。气候变化已经发生,在20世纪,全球温度约为0.6°C,并且考虑到不同的情况,预计到二十一世纪末,温度的升高将持续到4至6°C。剧烈的后果有时可能是积极的,但通常是负面的。碳(C)周期在全球气候变化中起着重要作用,无论是在缓解措施的原因和解决方案中。在几项国际惯例的会议记录中明确说明了赌注(1992年的里约热内卢,1997年的京都,2001年的马拉喀什),与农业土壤和水资源的可持续管理有关。要考虑的一个重要点是,大约2000 gt C与大气COZ直接相关,以陆生物的水分存储在大陆生物圈(植被 +土壤)中。因此,生物圈自然充当C下沉。挑战是,是否可以通过涉及建议土地使用和土壤/作物管理的拟人干预来增加此水槽。农业生态系统中的C隔离概念是一个通用概念,包括在土壤植物系统中的C存储(源自COZ)和其他非CT的通量(阴性或正),温室气体(GHG,即CH 4和NZO,以EcosStem Management诱导的等效COZ-C基础)表示。本书比其他温室气体更多地关注土壤,沉积物和河流中的COZ-C和有机C通量。但是,在运输过程中和沉积后几乎没有有关C周转的信息。有必要量化这些不同的C通量,以及它们如何受到管理替代方案的影响,从而导致土壤植物C储存,植物生产力,生物多样性和防止侵蚀的保护。虽然有充分的土壤侵蚀的大小和严重程度,但很少量化侵蚀的C的通量,并且关于颗粒有机c从地块的转移到大流域向河流,湖泊或海洋沉积物的大水平转移到大流域的传递中存在许多不确定性。因此,本书的原始目的是对从农业图的规模到大流域的侵蚀C通量进行定量数据。在图水平上量化侵蚀的C对于由于改进的管理系统而对C隔离的真实评估很重要。事实上,在许多研究中,土壤在图量表上的土壤“ c架”是由常规(参考图)管理下的c股票之间的差异计算的,而改善的管理,差异归因于在土壤中(通过工厂)储存大气菌的coz。但是,差异的一部分也可能是由于侵蚀和沉积物通过颗粒(和可溶性)C的转移引起的。在许多情况下,参考图上的侵蚀并不可忽略,并且侵蚀的C通量不能被视为CO Z-F1UX。因此,可能会严重高估“ C固存”和所谓改进的管理的影响。几乎没有关于侵蚀C(颗粒和可溶性)沿坡度及其沉积到湖泊或海洋沉积物的命运的实验数据。三个因此,本书的第二个目标是为了量化不同的土壤管理实践,侵蚀了C的大小,并将其与C隔离的真实值进行比较,以确定它们是否具有相同的数量级。通过土壤聚集体的分解产生了水侵蚀的C,这是第一个将土壤有机体C暴露于微生物过程的过程,从而增加了C矿化和CO 2排放。尚不清楚CO 2在颗粒物和可溶性C的运输过程中是否增加。换句话说,侵蚀的C是否有助于C隔离或CO 2排放?因此,本书的第三个主要目标是讨论被侵蚀的C的命运,无论是大气中的来源还是下沉?本卷基于国际座谈会用途的第一次研讨会,侵蚀和碳固存在法国蒙彼利埃,2002年9月23日至28日。