宣传册描述了该公司目前流行的高品质接收器,您已经阅读了该接收器的出色评论以及几份公司客户简报。宣传册描述了一款 23 管“全频高保真”接收器,配有镀铬调谐器底盘、镀铬 35 瓦“无失真”功率放大器(使用最近推出的 2A3 功率管)、优质 12 英寸电动底座扬声器和两个可选“高音扬声器”。调谐器具有连续可变选择性,带有中频
久经考验的 AERO-LIFT 模块化系统适用于我们所有的产品,也包括真空管升降机产品线。不同的组件(如吸盘和机械固定装置)、选件或外围设备有助于快速重新安装以反映新条件。您正在重组您的车间吗?您是否计划扩大真空管升降机的应用范围?您是否要更换材料?没问题。AERO-LIFT 真空管升降机可以单独重新安装和改装,因此可以再次可靠、快速地处理新任务。尽管模块化系统具有所有独特性,但我们仍然非常重视安全性。例如,我们的每个组件都符合相同的材料和工艺高安全要求,并且我们在改装期间确保相应组件能够最佳地协同工作。
摘要 - 太阳能集热器系统允许使用太阳能进行冷却和加热。这些集热器中使用传热流体将收集到的太阳能传输到需要它的应用。科学家们提出了各种集热器设计和更好的收集材料,以提高太阳能集热器的转换效率。本文讨论了使用纳米流体研究真空管太阳能集热器。研究人员使用两步法制备纳米流体,从而提高了纳米流体的稳定性。孟买的 Swasco 实验室提供了纳米粒子。纳米粒子在用于热管之前与蒸馏水混合并充分混合。在这项工作中,纳米流体分两个阶段制造,从而提高了纳米流体的稳定性。在放入热管之前,纳米颗粒与蒸馏水充分混合。大多数太阳能集热器可以通过使用纳米流体来提高其整体性能。然而,除非解决有关纳米流体稳定性、整体性能和滞后预期等一些问题,否则纳米流体在传热应用中的全部潜力就无法实现。
“ENIAC 上的计算器配备了 18,000 个真空管,重 30 吨,而未来的计算机可能只有 1,000 个真空管,重量可能只有 1.5 吨。”−《大众机械》,1949 年 3 月。
9. 在电脑前工作时间过长会导致用户背痛、神经损伤等。 10. 通过自动化任务,失业率正在以非常快的速度增长。 计算机的演变/世代。 除此之外,请参阅 Sinha 的书,即详细信息。 这些不是来自 P.K.Sinha 的书。 第一代 1942-1954 1. 这一代的计算机使用真空管或真空管作为其基本电子元件。 2. 它们比早期的机械设备更快。 3. 这些计算机体积非常大,而且非常昂贵。 缺点 1. 它们消耗太多电量,产生太多热量,即使使用很短的时间也是如此。 2. 它们非常不可靠,经常发生故障。 3. 它们需要定期维护。它们的组件是手工组装的。 4. 需要大空调。 示例:I. 第一台计算机是 ENIAC(电子数字积分器和计算器),它是第一台使用真空管的电子计算机。
可获得受控电子流的装置是所有电子电路的基本组成部分。在 1948 年发现晶体管之前,此类装置大多是真空管(也称为阀门),例如真空二极管具有两个电极,即阳极(通常称为极板)和阴极;三极管具有三个电极——阴极、极板和栅极;四极管和五极管(分别有 4 个和 5 个电极)。在真空管中,电子由加热的阴极提供,通过改变不同电极之间的电压可获得这些电子在真空中的受控流动。电极间空间必须为真空,否则移动电子可能会在与其路径中的空气分子碰撞时失去能量。在这些装置中,电子只能从阴极流向阳极(即只能朝一个方向流)。因此,此类装置通常被称为阀门。这些真空管设备体积庞大,功耗高,通常在高电压(~100 V)下工作,寿命有限,可靠性低。现代固态半导体电子器件的发展可以追溯到 20 世纪 30 年代,当时人们意识到某些固态半导体及其结可以控制流经它们的电荷载流子的数量和方向。光、热或施加的小电压等简单激励可以改变半导体中移动电荷的数量。请注意,电源
“为了便于加工,我们省去了镍(阴极芯)中的硅。..将真空管的有效寿命从 500 小时提高到了 500,000 小时。边际检查又将这一寿命提高了十倍。”
本文分析了一种新型全玻璃直通真空管集热器的热性能建模和性能预测。开发了管的数学模型,并将其纳入 CFD 软件进行数值性能模拟。为了提高集热器的热性能预测,考虑了不同的人工神经网络 (ANN) 模型。采用包含 200 多个样本的综合实验数据集对模型进行测试。将热模拟模型与 ANN 模型相结合,使用建模的集热器输出作为输入模型之一,显著提高了 ANN 模型的预测精度。与 ANN 模型相比,仅基于 CFD 模型的预测精度最差。卷积神经网络 (CNN) 模型被证明是预测精度最好的 ANN 模型。关键词:太阳能集热器;真空管;神经网络;多元线性回归;CFD;热性能;预测