纳米结构氧化铝中的微观结构、相形成和光带;J. Gangwar、KK Dey、Komal、Praveen、SK Tripathi、AK Srivastava;Advanced Materials Letters,2011,2(6),402-408。“通过物理途径生长的块体碲化锡的特殊结构、光学、顺磁性、电子和电学行为”,Praveen Tanwar、AK Srivastava、Sukhvir Singh、AK Panwar,Advanced Science Letters,第 21 卷,第 9 期,2015 年 9 月,第 2855-2864(10) 页。“不同厚度碲化锡薄膜的微观结构和光学特性研究”,Praveen Tanwar、Amrish K. Panwar、Sukhvir Singh、AK Srivatava; Thin Solid Films 693 (2020) 137708。“不同厚度真空蒸发 SnTe 薄膜的结构、电学和热电性能比较”,Praveen Tanwar、AK Panwar、Sukhvir Singh、AK Srivastava、J. Nanosci. Nanotechnol. 2020, 20(6):3879-3887。“真空蒸发 SnTe 薄膜的结构、电学和热电性能研究”,Praveen Tanwar、Sukhvir Singh、AK Panwar、AK Srivastava,《印度纯粹与应用物理学杂志》第 58 卷,2020 年 10 月,第 740-749 页。 “SnTe 拓扑绝缘体上铟掺杂的超快探测”,Praveen Tanwar、Prince Sharma、AK Panwar、AK Srivastava、A. Kumar、Sukhvir Singh 和 M. Kumar;物理学 B 631 (2022) 413656。
I.引言已经开发了许多用于沉积高质量YBCO薄膜[1]的技术[1],例如真空蒸发,激光消融,化学蒸气沉积,磁控溅射[2,3]等对高温超导膜沉积的发展和理解在很大程度上有助于在低温电信设备中应用,例如低通滤波器,延迟线和微波通信的天线,并生产在数字电路和鱿鱼中有用的Josephson连接。所有技术和应用都将取决于大型薄膜廉价生产的成功。尤其是越野膜的生长,多层人士仍然是一个非常复杂的事情。由于存在几种固有的物质问题,例如短相干长度,各向异性,低临界电流密度和化学计量学,因此该过程变得复杂。同样,在薄膜中,元素从底物扩散到膜到膜以及相邻层是多层结构中的另一个问题。
金属卤化物钙钛矿是有前途的半导体,在光电和光子技术中具有有希望的应用。当针对相干的排放应用时,必须开发具有较低激光阈值和稳定性的材料,以提高连续波光学泵送条件下的性能,并最终允许实现长期备受追捧的电泵激光。钙钛矿多量子孔(MQW)可以通过在异质结构的井中结识光兴激素来缓解种群反转,但是它们的制造过程和结构设计仍然需要精致的优化,以使它们有价值的光子平台。在这里,使用一种简便且易于扩展的顺序单源真空蒸发方法,基于有机半导体和CSPBBR 3制造钙钛矿MQW。带有有机层层的钙钛矿显示出从根本增强的相位稳定性,钝化缺陷和改善的辐射重组特性。以这种方式,可以在正确设计异质结构井和屏障厚度后,可以实现光学泵送的自发发射。这项工作报告了一种有效的钙钛矿MQW制造方法,同时提供了对其光物理特性的更深入的了解,以促进其作为相干发射器的应用。
摘要:使用直接激光写入(激光诱导的石墨烯; LIG)合成的石墨烯材料,由于其较大的表面积,易于制造和成本效益而制成了有利的传感器材料。尤其是用金属纳米颗粒(NP)装饰的LIG已在各种传感器中使用,包括化学传感器以及电子和电化学生物传感器。但是,金属装饰对LIG传感器的影响仍然存在争议。基于计算模拟的假设并不总是与实验结果相匹配,甚至不同研究人员报告的实验结果也不一致。在本研究中,我们探索了金属装饰对LIG气体传感器的影响,分别为2和NH 3气体作为代表性的氧化和还原剂。为了消除金属盐残留物引起的不良副作用,金属NP通过真空蒸发直接沉积。尽管金属工作功能如何,但在金属装饰方面,传感器的气体敏感性会恶化,但在NH 3暴露的情况下,它们会改善金属装饰。对LIG传感器中金属NP的化学结构和形态进行了仔细的研究表明,具有低功函数的金属NP的自发氧化会改变LIG气体传感器的行为,并且在NO 2和NH 3中,传感器的行为遵循不同的原理。
简介。有机半导体的开发。有机和无机光电技术的比较。有机光子学和电子市场开发。立陶宛有机光电技术的开发。有机光电学中使用的材料。设备的典型多层结构典型的有机半导体。主要的技术:小分子,聚合物。多功能材料。分子玻璃。电荷分离材料。发射器:单线,三重态。分子复合物。非线性光学分子。其他材料。有机层。纯化材料的方法。真空中的蒸发。从解决方案中铸造。获得不溶性层。合金。通过真空蒸发和铸造方法获得多层结构。Langmuir-Blogett技术。自组织层。结构层。寿命和有机层降解的问题。封装。有机共轭分子的特性。分子轨道,轨道杂交。分子电子和振动状态。势能共配置图。分子中的激发过程。环境影响,分子复合物,激发转移过程。fiorster,敏捷能量传递。有机材料和聚合物中激发激发的基本知识。缺陷状态。Frenkel的激子。多元中激子的状态。激子 - 振动相互作用。电荷转移激子。激子北极星和极化。激子运输和放松过程。有机层和晶体中的电荷载体状态。光学和绝热带隙。载体带,载体状态密度。聚合物状态。电荷转移现象。载体迁移率,其温度和电场依赖性。
[15] Watanabe Tomonori等人:低温工程39,553(2004)。[16] Iimi Akira等人:低温工程42,42(2007)。[17] A.P.Malozemoff和Y. Yamada:超导100年,第11章“第二代HTS Wire”,P689(CRC出版社,2011年)。和Izumi Teruro,Yanagi Nagato:血浆和核融合杂志93,222(2017)。大量的制造方法,包括兔子底物,mod(化学溶液方法)和真空蒸发方法。 [18] http:// www。istec。或。JP/Tape-Wire/Labo-Tape-Wire。html,使用PLD方法和MOD方法(化学溶液方法)的金属棒的高性质。[19] T. Haugan等。,自然430,867(2004)。[20] Y. Yamada等。,应用。物理。Lett。 87,132502(2005)。 [21] H. Tobita等。 ,超级条件。 SCI。 技术。 25,062002(2012)。 [22] Matsumoto Kaname:应用物理77,19(2008)。 [23] Yamada Shigeru:应用物理93,206(2024)。 [24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。 [25] Miyata Noboru:材料37,361(1988)。 [26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。 ,科学。 Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。Lett。87,132502(2005)。[21] H. Tobita等。,超级条件。SCI。 技术。 25,062002(2012)。 [22] Matsumoto Kaname:应用物理77,19(2008)。 [23] Yamada Shigeru:应用物理93,206(2024)。 [24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。 [25] Miyata Noboru:材料37,361(1988)。 [26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。 ,科学。 Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。SCI。技术。25,062002(2012)。[22] Matsumoto Kaname:应用物理77,19(2008)。[23] Yamada Shigeru:应用物理93,206(2024)。[24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。[25] Miyata Noboru:材料37,361(1988)。[26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。,科学。Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。Rep。11,8176(2021)。[28] R. Hiwatari等。,血浆融合res。14,1305047(2019)。[29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。[30] D. uglietti,超越。SCI。 技术。 32,053001(2019)。SCI。技术。32,053001(2019)。