眼睛跟踪技术已成为医学领域的宝贵工具,在各个学科中提供了广泛的应用。本观点文章旨在详细概述眼睛跟踪技术在医疗实践中的多种应用。总结了最新的研究发现,本文探讨了眼睛跟踪技术在提高诊断准确性,评估和改善医疗绩效以及改善康复结果方面的潜力。此外,它突出了眼睛跟踪在神经病学,心脏病学,病理学,手术以及康复中的作用,为各种医疗条件提供了客观措施。此外,本文讨论了自闭症谱系障碍,注意力/多动障碍(ADHD)(ADHD)和人类计算机在医疗模拟和培训中的相互作用的效用。最终,这篇观点文章强调了眼睛跟踪技术对医学实践的变革性影响,并向未来的发展方向提出了持续的发展和整合。
浮点非常普遍,许多人没有PVD或其他眼睛条件,这意味着他们不必担心。但是,有时候漂浮物可能是另一种眼睛状况的标志,例如眼睛中的炎症。,如果您注意到新的浮子或浮动器的增加,则应始终应尽快检查眼睛,以确保没有其他眼睛状况导致它们。
摘要:对眼动和视觉状态的歧视是研究的一流领域,迫切需要非手动的基于EEG的轮椅控制和导航系统。本文提出了一种新型系统,该系统利用脑部计算机界面(BCI)来捕获人类受试者的电子摄影(EEG)信号,而眼睛运动并随后通过应用随机森林(RF)分类算法将其分为六个类别。rf是一种合奏学习方法,它构建了一系列决策树,每棵树都会在其中进行类预测,而类别预测数量最多的类成为模型的预测。根据受试者眼睛的位置定义了拟议的随机森林脑 - 计算机界面(RF-BCI)的类别:开放,闭合,左,左,右,向上和向下定义。RF-BCI的目的应用作基于EEG的控制系统,用于驱动机电轮椅(康复设备)。已使用包含来自10名不同患者的219个记录的数据集对所提出的方法进行了测试。BCI实施了EPOC Flex头盖系统,其中包括32个盐毡传感器,用于捕获受试者的EEG信号。每个传感器每秒捕获了四个不同的脑波(Delta,Theta,Alpha和Beta)。然后,将这些信号分为4秒的窗户,每条记录512个样品,并为每个EEG节奏提取频带能量。实验结果表明,与获得6级分类的其他方法相比,RF算法的表现优于其他方法和高度准确性(85.39%)。将所提出的系统与幼稚的贝叶斯,贝叶斯网络,K-Nearest邻居(K-NN),多层感知器(MLP),支持向量机(SVM),J48-C4.5决策树和袋装分类算法进行了比较。此方法利用了从Epoc Epoc Flex可穿戴式录制设备中获得的高空间信息,并成功检查了该设备用于BCI轮椅技术的潜力。
•与斐济国立大学(FNU)和斐济卫生与医疗服务部(MHMS)合作,太平洋眼研究所培训了由眼科医生,护士和技术人员组成的206个眼科医生。2023年有15名学生,其中8名是护士。
1 瑞士苏黎世大学医院 (USZ) 耳鼻咽喉头颈外科系内耳干细胞实验室 2 瑞士苏黎世大学 (UZH) 3 瑞士苏黎世功能基因组学中心(苏黎世联邦理工学院和苏黎世大学) 4 瑞士伯尔尼大学生物医学研究系再生神经科学项目 5 美国马萨诸塞州波士顿马萨诸塞眼耳医院 6 美国马萨诸塞州波士顿哈佛医学院 7 美国马萨诸塞州剑桥哈佛干细胞研究所 8 荷兰莱顿大学医学中心耳鼻咽喉和头颈外科系莱顿耳生物学 9 荷兰莱顿大学医学中心诺和诺德基金会干细胞医学中心 (reNEW) 10 美国马萨诸塞州波士顿波士顿儿童医院耳鼻咽喉科 11 波士顿儿童医院 FM 柯比神经生物学中心美国马萨诸塞州波士顿 12 波士顿儿童医院整形与口腔外科部;美国马萨诸塞州波士顿
1美国路易斯安那州立大学兽医临床科学系,美国洛杉矶70803,美国巴吞鲁日; hgafen1@lsu.edu(h.b.g。 ); cliu@lsu.edu(C.-C.L. ); nikoleeineck@gmail.com(N.E.I。 ); cscully@lsu.edu(c.m.s. ); mironovich1@lsu.edu(M.A.M. ); reneecarter@lsu.edu(R.T.C。) 2路易斯安那州立大学病原科学系,美国洛杉矶70803,美国洛杉矶; lguarneri1@lsu.edu 3 3美国路易斯安那州立大学医学院微生物学和寄生虫学系,美国洛杉矶70112,美国; ctay15@lsuhsc.edu(c.m.t. ); mluo2@lsuhsc.edu(m.l.) 4小型动物临床科学系西部兽医学院,萨斯卡通,SK S7N 5B4,加拿大; marina.leis@usask.ca 5临床科学系,康奈尔大学兽医学院,美国纽约州伊萨卡市,纽约14853; ems462@cornell.edu *通信:alewin1@lsu.edu;电话。 : +1-225-578-9600†这些作者对这项工作也同样贡献。1美国路易斯安那州立大学兽医临床科学系,美国洛杉矶70803,美国巴吞鲁日; hgafen1@lsu.edu(h.b.g。); cliu@lsu.edu(C.-C.L.); nikoleeineck@gmail.com(N.E.I。); cscully@lsu.edu(c.m.s.); mironovich1@lsu.edu(M.A.M.); reneecarter@lsu.edu(R.T.C。)2路易斯安那州立大学病原科学系,美国洛杉矶70803,美国洛杉矶; lguarneri1@lsu.edu 3 3美国路易斯安那州立大学医学院微生物学和寄生虫学系,美国洛杉矶70112,美国; ctay15@lsuhsc.edu(c.m.t. ); mluo2@lsuhsc.edu(m.l.) 4小型动物临床科学系西部兽医学院,萨斯卡通,SK S7N 5B4,加拿大; marina.leis@usask.ca 5临床科学系,康奈尔大学兽医学院,美国纽约州伊萨卡市,纽约14853; ems462@cornell.edu *通信:alewin1@lsu.edu;电话。 : +1-225-578-9600†这些作者对这项工作也同样贡献。2路易斯安那州立大学病原科学系,美国洛杉矶70803,美国洛杉矶; lguarneri1@lsu.edu 3 3美国路易斯安那州立大学医学院微生物学和寄生虫学系,美国洛杉矶70112,美国; ctay15@lsuhsc.edu(c.m.t.); mluo2@lsuhsc.edu(m.l.)4小型动物临床科学系西部兽医学院,萨斯卡通,SK S7N 5B4,加拿大; marina.leis@usask.ca 5临床科学系,康奈尔大学兽医学院,美国纽约州伊萨卡市,纽约14853; ems462@cornell.edu *通信:alewin1@lsu.edu;电话。: +1-225-578-9600†这些作者对这项工作也同样贡献。
如今生产的产品并非为维修而设计。这导致产品损坏后被丢弃,并被新产品取代,而不是进行维修。为了解决这个问题,欧盟委员会不断努力更新产品开发的法律和指令,并逐步生效。本论文重点关注便携式电池的生态设计指令和电池指令,旨在重新设计指定的耳机以满足可修复性和最终用户更换电池的要求。这款耳机已由 Sigma Connectivity AB 指定,并从现有的设计中开发出更新的设计以满足生态设计和电池指令的要求。这是通过设计更改来实现的,这些更改允许经济可行的维修和选择最终用户可以自行更换的新电池,以及新电池带来的设计更改。电池是镍氢电池。
此前,飞机机身结构中连接机翼机身和垂直尾翼机身的吊耳已提交有限元分析 [2-3]。由于快速加速和复杂运动,机翼表面将承受巨大的载荷 [4]。由于弯矩最大,机翼根部将承受最大的应力集中 [5]。支架用于将机翼固定在机身框架上。机翼的弯矩和剪应力通过这些附件传递到机身 [6]。此外,疲劳是指结构部件强度在运行过程中不断下降,在极低的极限应力水平下就会发生故障。这是因为重复载荷作用的时间较长。基于静态结构分析,利用应力寿命技术和 Goodman 标准进行的疲劳寿命计算预测几何形状是安全的 [7]。因此,机翼机身吊耳连接结构采用有限元分析和疲劳寿命计算方法进行设计。
最新的动力和符合微电子制造的进展为健康监测和疾病治疗开辟了机会。其他材料工程的进步,例如导电,皮肤样水凝胶,液体金属,电动纺织品和压电薄膜的开发提供了安全舒适的方式,可以与人体接口。一起,这些进步使具有集成的多模式感应和刺激能力的生物电子设备的设计和工程能够在身体上的任何地方佩戴。在这里特别感兴趣的是,外耳(耳膜)提供了一个独特的机会来设计具有高度可用性和熟悉程度的可扩展生物电子设备,鉴于耳机的广泛使用。本评论文章讨论了能够生理和生物化学感应,认知监测,靶向神经调节以及对人类计算机相互作用的控制的耳朵生物电子设备开发的最新设计和工程进步。从这个可扩展的基础上讲,研究和工程的增长和竞争将增加,以推动耳态生物电子学。这项活动将导致患者和消费者对这些智能耳机式设备的采用增加,以跟踪健康,治疗医疗状况以及增强人类计算机的相互作用。
