3.9.1. 通行权灯 ................................................................................................................ 81 3.9.2. 频闪灯 ................................................................................................................ 81 3.9.3. 位置灯 ................................................................................................................ 81 3.9.4. 发动机舱灯 ............................................................................................................. 81 3.9.5. 机翼着陆灯 ............................................................................................................. 81 3.9.6. 机头滑行灯 ............................................................................................................. 82 3.9.7. 防撞灯 ............................................................................................................. 82 3.9.8. 地面泛光灯 ............................................................................................................. 82 3.9.9. 下锁灯 ............................................................................................................. 82 3.9.10. 内部/紧急疏散灯 ............................................................................................. 82 3.9.11. 3.9.12. 白炽灯 ................................................................................................................ 83 3.9.13. 卤素灯 ................................................................................................................ 83 3.9.14. 发光二极管 ........................................................................................................ 84
§ 27.1381 仪表灯。§ 27.1383 着陆灯。§ 27.1385 位置灯系统安装。§ 27.1387 位置灯系统二面角。§ 27.1389 位置光分布和强度。§ 27.1391 前位灯和后位灯水平面的最小强度。§ 27.1393 前位灯和后位灯任何垂直平面的最小强度。§ 27.1395 前位灯和后位灯重叠光束的最大强度。§ 27.1397 颜色规格。§ 27.1399 行车灯。§ 27.1401 防撞灯系统。
数字设计还能够更准确地确定多个返回的来源,从而消除高度解决方案中的歧义。此功能允许 LRA-2100 识别每个目标并报告最佳结果。它允许 LRA-2100 拒绝来自飞行中飞机持续超过 2.5 秒的错误高度返回以及来自其他地面结构(例如着陆灯、桥梁和立交桥)的错误高度返回。此功能显著减少了由于从一个无线电高度计到另一个无线电高度计的变化而导致的自动驾驶仪断开连接的发生。
对于双引擎飞机,耗电量最大的是起落架的操作。起落架的升起或降下会消耗两台交流发电机(或发电机)总负载容量的 30% 到 40%。其次是防冰系统的累积耗电量。开启皮托管加热器、失速静脉加热器、螺旋桨加热器、挡风玻璃加热器和燃油防冰装置,再加上启动除冰装置,会消耗 25% 到 35% 的可用电量。灯光(包括外部和内部)最多消耗 25%,仅着陆灯就消耗 15%。航空电子设备(导航、通信和显示)
标准仪器 • 空速指示器 • 高度计(英寸汞柱) • 旋翼/发动机双转速表 • 歧管压力表 • 垂直速度指示器 • 磁罗盘 • 气缸盖温度计 • 油温和压力表 • 燃油量表 • 电流表 • 化油器温度计 • 石英钟 • 数字 OAT 表/电压表 • 小时表 警告灯 • 低电压 • 燃油不足 • 低油压 • 旋翼转速低(灯光和喇叭) • 主齿轮箱温度 • 主齿轮箱芯片 • 尾齿轮箱芯片 • 旋翼制动器接合 • 起动器接合 • 离合器执行器 • 调速器关闭 标准设备 • LED 防撞和导航灯 • 双着陆灯 • 面板和地图灯 • 辅助燃油系统 • 门锁 • 地板和手动对讲机开关 • 有色挡风玻璃和窗户 • 腹部硬点 • 拖车适配器 • 机油滤清器和发动机油快速排放 • 地勤轮 • 旋翼叶片系紧装置 • 挡风玻璃封面 • 罗宾逊旅行袋
2000 年 1 月 27 日起,当前的旺格雷强制广播区 (NZC116) 和进近条件区 (NZC117) 将停用,并由新的强制广播区 (NZC114) 取代。此更改是在与要求更改的当地运营商协商后做出的。大家认为,一个包含旺格雷机场的大型 MBZ 将为飞行员提供比旧进近条件区及其相邻 MBZ 更高的安全性。只有一种特殊用途空域还将确保所有飞机都配备无线电设备并定期进行位置报告。此外,着陆灯或防撞灯必须打开(如果安装)。有关此空域更改的更多详细信息,请参阅 AIP 补充 AIRAC 周期 00/1(2000 年 1 月 27 日生效)。AIP 始终是此类更改的官方来源,在任何飞行前都应检查当前补充。如果您经常飞越旺格雷地区,您可能希望将 AIP 补充说明的副本附加到您当前的图表上,直到 2000 年 7 月 15 日新航空图发布。2000 年 7 月 15 日的地形图不仅会反映这些变化,还会以与陶波 VTC 相同的方式描绘从斯普林菲尔德 NDB 到机场的最终仪表进近航迹。这将有助于 VFR 交通更准确地确定 IFR 飞机可能从哪里进近。