特别巡逻插入和撤离系统......................................................................................................................7-20 快速绳索插入系统...................................................................................................................................7-21 绳降技术...................................................................................................................................................7-21 拾取和着陆区......................................................................................................................................7-22 着陆点......................................................................................................................................................7-22 标记技术.............................................................................................................................................7-23 空降作业.............................................................................................................................................7-24 空降插入技术......................................................................................................................................7-24 军用自由落体降落伞作业......................................................................................................................7-24 多任务降落伞系统......................................................................................................................................7-25 串联偏置补给输送系统
Astrobotic 的着陆器可以将有效载荷送至月球轨道和月球表面。虽然轨道会因任务不同而变化,但 Peregrine 和 Griffin 通常保持在三个不同的月球轨道 (LO) 中,其中两个可用于部署有效载荷。近地点始终为 100 公里,而远地点则通过月球轨道插入 (LOI) 机动从 8700 公里减小到 100 公里的圆形轨道。轨道倾角通常由表面着陆点决定。
3. 创建新的互连点 (POI) • 建造新的变电站,为可再生能源发电创造更高效的着陆点。这可能包括将多条现有线路集中到共同位置。 • 建议将扩容发电移至限制较少的位置 • 示例:纽约市 16 GW 的能源存储需求可能需要大约 54 个 POI(每个 POI 300 MW)
从火星探测器的全景相机拍摄的这张彩色图像中可以看到火星子午线平原火星探测器机遇号周围的陨石坑内部。这是火星上航天器访问过的最暗的着陆点。陨石坑边缘距离火星车约 10 米(32 英尺)。陨石坑直径估计为 20 米(65 英尺)。陨石坑内遍布大量岩石露头,陨石坑的土壤似乎是粗灰色颗粒和细红色颗粒的混合物,这让科学家们非常感兴趣。
近年来,许多探测器被发射到月球、行星、小行星和彗星进行科学观测。许多探测器都携带了光探测和测距 (LIDAR) 系统,其测量范围从几十公里到几百公里 [1, 2, 3, 4, 5]。我们已经为远程 LIDAR 接收器开发了定制 IC“LIDARX”,它将安装在火星卫星探测器 (MMX) [6] 上。另一方面,如果航天器降落在月球或行星上进行科学观测或资源勘探,航天器的着陆点通常是未开发地点,这些地点可能并不总是着陆的理想地点。在这些未开发地点进行精确着陆需要三维 (3D) 图像,以便在着陆前立即测量地形、避障和检测相对于地面的姿态。美国宇航局的自主着陆和避险技术 (ALHAT) 项目正在开发一种系统,用于快速自主地识别未来行星着陆装置 GN&C 的安全着陆点 [7, 8, 9]。在 ALHAT 中,Flash LIDAR [10, 11, 12, 13] 被定位为障碍物检测的重要传感器。作为一个典型的例子,2016 年发射的 OSIRIS-REx 使用 Flash LIDAR 进行制导、导航和控制 [14, 15, 16, 17]。Flash LIDAR 是一种以类似于闪光摄影的方式捕获 3D 图像的传感器,通过将激光脉冲散射并照射到相机的视场上,相机会
这张由火星探测车全景相机拍摄的彩色图像显示了火星子午线平原上火星探测车“机遇”号周围的陨石坑内部。这是有史以来航天器在火星上访问过的最暗的着陆点。陨石坑边缘距离火星探测车约 10 米(32 英尺)。陨石坑直径估计为 20 米(65 英尺)。陨石坑中散布的大量岩石露头以及陨石坑土壤令科学家们着迷,土壤似乎是粗灰色颗粒和细红色颗粒的混合物。
这张由火星探测车全景相机拍摄的彩色图像显示了火星子午线平原上火星探测车“机遇”号周围的陨石坑内部。这是有史以来航天器在火星上访问过的最暗的着陆点。陨石坑边缘距离火星探测车约 10 米(32 英尺)。陨石坑直径估计为 20 米(65 英尺)。陨石坑中散布的大量岩石露头以及陨石坑土壤令科学家们着迷,土壤似乎是粗灰色颗粒和细红色颗粒的混合物。
这张由火星探测车全景相机拍摄的彩色图像显示了火星子午线平原上火星探测车“机遇”号周围的陨石坑内部。这是有史以来航天器在火星上访问过的最暗的着陆点。陨石坑边缘距离火星探测车约 10 米(32 英尺)。陨石坑直径估计为 20 米(65 英尺)。陨石坑中散布的大量岩石露头以及陨石坑土壤令科学家们着迷,土壤似乎是粗灰色颗粒和细红色颗粒的混合物。
这张由火星探测车全景相机拍摄的彩色图像显示了火星子午线平原上火星探测车“机遇”号周围的陨石坑内部。这是有史以来航天器在火星上访问过的最暗的着陆点。陨石坑边缘距离火星探测车约 10 米(32 英尺)。陨石坑直径估计为 20 米(65 英尺)。陨石坑中散布的大量岩石露头以及陨石坑土壤令科学家们着迷,土壤似乎是粗灰色颗粒和细红色颗粒的混合物。