摘要 可重复使用运载火箭 (RLV) 不仅是经济和生态可持续的太空进入的关键,也是满足对小型卫星和巨型星座日益增长的需求的一项至关重要的创新。为了确保欧洲独立的太空进入能力,ASCenSIon(推进太空进入能力 - 可重复使用性和多卫星注入)作为一个创新培训网络诞生,拥有 15 名早期研究人员、10 名受益者和 14 个遍布欧洲的合作组织。本文概述了该任务,从可重复使用级的上升到再入,包括多轨道注入和安全处置。特别关注 ASCenSIon 内部开展的有关任务分析 (MA)、制导导航和控制 (GNC) 和气动热力学 (ATD) 的活动。介绍了项目的预见方法、途径和目标。这些主题由于相互关联,需要内部创新和高水平的协作。飞行前设计能力推动了 MA 和 GNC 任务化工具与 ATD 软件相结合以测试/探索再入解决方案的必要性。这种可靠而高效的工具将需要开发用于发射器再入的 GNC 算法。此外,还解决了 RLV 轨迹优化的具体挑战,例如集成的多学科飞行器设计和轨迹分析、快速可靠的机载方法。随后,本研究的结果用于制定控制策略。此外,执行新颖的多轨道多有效载荷注入。随后,开发了一种 GNC 架构,该架构能够在精度和软着陆约束下以最佳方式将飞行器引导至目标着陆点。此外,ATD 在多个阶段影响任务概况,需要在每个设计步骤中加以考虑。由于初步设计阶段的复杂性和计算资源有限,需要使用响应时间短的替代模型来基于压力拓扑预测沿所考虑轨迹的壁面热通量。完整的概况包括发射装置为确保遵守空间碎片减缓指南而采用的任务后处置策略,以及这些策略的初步可靠性方面。本文对 ASCenSIon 工作框架内讨论的主题及其相互联系进行了初步分析,为开发 RLV 的新型尖端技术铺平了道路。关键词:可重复使用运载火箭、制导、导航和控制、可靠性、气动热力学、
和 Sierra Space 签署谅解备忘录 英国水平发射场康沃尔太空港和美国太空公司 Sierra Nevada Corporation(将通过其全资子公司 Sierra Space 参与其中)签署了一份谅解备忘录 (MoU),以在英国航天局资助的 Sierra Space 的 Dream Chaser® 航天飞机的运营概念完成后探索未来的合作机会。康沃尔太空港和 Sierra Space 拥有共同的愿景,即实现太空民主化 - 通过降低进入太空的成本来增加太空领域的参与度,并传达卫星在应对世界各国领导人目前正在 G7 上讨论的一些全球气候挑战方面可以发挥的重要作用。谅解备忘录的签署是在两家公司过去两年进行讨论之后签署的,也是在 Sierra Space 完成运营概念 (CONOPS) 之后签署的,该概念涉及康沃尔太空港是否适合作为其跑道着陆 Dream Chaser 的返回地点。这项研究的结论是,康沃尔太空港是一个有利的潜在返回地点,并且可能会导致更详细的着陆点研究,之后康沃尔将被指定为未来任务的计划返回地点。追梦者号的设计目的是从各种垂直运载火箭发射到低地球轨道 (LEO),然后像任何大型商用飞机一样返回太空港或机场跑道 - 该系统设计为可多次重复使用,使其成为一个更可持续的发射系统。 Sierra Space 拥有 30 多年的航天经验,支持过 500 多个航天任务,是一家世界领先的航天公司,也是康沃尔太空港的重要第二发射合作伙伴,此外还有 Virgin Orbit,后者将于 2022 年在该地点实现英国首次自主轨道发射。CONOPS 由英国航天局作为其水平发射基金的一部分资助,调查了许多因素,包括追梦者的运营要求、美国/英国监管框架、返回任务轨迹分析、风险分析、环境和基础设施审查,以及对现在和未来供应链能力的考虑。除了考虑航天运营要求外,Sierra Space 还提供了有关可在现场提供哪些额外设施的见解。这些见解被纳入目前正在建设的“空间技术中心”,这是康沃尔太空港的一个多用户建筑群,包括有效载荷集成、发射和任务运营设施,以及共享工作空间和实验室,用于在有效载荷从太空返回后立即进行科学研究。
西部各州都在努力实现清洁能源的未来和转型。凭借我们现有和计划的生产能力和基础设施,新墨西哥州可以满足向美国西部提供清洁能源的最苛刻的要求。通过这项研究,我们确定了许多有希望的全州范围内生产和使用氢气的机会。这些机会为确保新墨西哥州继续成为能源强国提供了一条道路。更好的是,成为清洁能源强国。• 生产 – 新墨西哥州是风能和太阳能的优质资源,拥有大量的天然气生产和储量。现有的基础设施为清洁氢气的生产提供了原料。这些资源使新墨西哥州成为清洁氢气的主要生产国的理想选择。• 配送 – 新墨西哥州以及四个角落的其他州都非常适合多向氢气配送(和氢燃料发电),因为现有的基础设施包括大量电力传输、主要州际管道、州际公路和铁路线。• 最终用途 – 新墨西哥州氢气的三大最终用途机会是电转气、货运和工业。电转气是电力系统深度脱碳的最佳长期存储选项之一。随着大量货物在该州运输,货运将是另一个重要的最终用途。最后,许多工业通常被认为是难以减少碳排放的行业,而氢气是一个有竞争力的选择。• 出口——新墨西哥州目前是美国其他地区的主要电力、石油和天然气出口地。由于新墨西哥州靠近主要电力传输、主要州际公路、铁路线和服务于关键市场的管道,氢气为新墨西哥州继续成为美国其他地区和国际能源出口地提供了机会。• 机会——人们对建设新墨西哥州的氢基础设施表现出浓厚的兴趣,包括现代化电网、改造或更换燃煤发电设施、碳捕获和封存示范项目、捕获逸散性甲烷排放以给车辆和铁路车队提供燃料,以及利用现有的石油和天然气基础设施运输到主要市场。 • 建议——提出了几项建议来制定和指导政策讨论,以便新墨西哥州能够引领向清洁能源经济的转型,并继续利用现有、正在开发和潜在的资源,继续成为美国西部的能源强国,从而享受强大的多元化经济,同时吸引未来的产业。发展清洁氢能经济是一项强大的经济发展和能源多样化工具,由于具有许多内在属性,该州完全可以掌握这一工具。清洁氢能机会及其新发现的经济投资正在寻找着陆点,尽管该州非常适合进行这项投资,但它必须通过思想和政治领导力抓住机遇。
在采伐和道路设计中使用激光雷达地形测量的诱惑和陷阱 Finn Krogstad 和 Peter Schiess 论文发表于 2004 年 6 月 13-16 日在不列颠哥伦比亚省温哥华举行的 IUFRO 3.06 山地森林作业联合会议和第 12 届国际山地伐木会议摘要机载激光测高 (Lidar) 可以生成极其详细和准确的地形图,即使在被森林冠层遮挡的地面上也是如此。详细的激光雷达地形图可以识别可能的着陆地点、难以穿越的溪流、不稳定的土壤、难以穿越的边坡和有用的长凳。这些细节可以减少现场时间,指导道路设计选择更好的方案,并提高我们对成本估算的信心。然而,激光雷达测绘偶尔也会失败,这些失败的表现方式将决定激光雷达的可靠性和对道路设计的价值。我们讨论了首次使用激光雷达对雷尼尔山南部的塔霍玛州立森林进行测绘的经验。这种详细的地形测绘被用于森林作业设计,例如着陆点和道路位置,作为基于流域的采伐和运输计划的一部分。随后对基于激光雷达的办公室设计进行了实地验证。这种 DEM 在森林工程设计中取得成功的关键在于能够(或缺乏)区分地面点覆盖充足或边缘的区域,从而导致测绘细节优秀或错误。我们讨论了各种方法,这些方法可以识别激光雷达地面点覆盖边缘的区域,从而形成测绘承包商应遵守的第一组激光雷达数据收集要求。看到树冠下的情况木材采伐和道路规划中反复出现的一个问题是,用于采伐的树木可能会遮挡必须堆放原木和修建道路的地面。规划中常用的地形图基于航空照片,其中我们现在想要采伐的林分遮挡了我们必须规划的地面。因此,得到的地形图是顶部树冠的地图,带有假定树高的偏移量。不幸的是,树冠并不完全贴合地面,在采伐和道路规划中至关重要的细微地形变化并没有反映在最终的树冠顶部。地形通常包括土壤不稳定、岩石露头和不平坦的地形,这些可能会给采伐和道路带来困难。树冠还会遮挡可以作为方便着陆和道路位置的天然土丘和长凳。因此,这些地形图只能作为设计的一般指南,操作的关键要素需要基于现场验证。机载激光地形扫描 (Lidar) 的最新发展使得即使在森林树冠下也可以进行详细的地形测绘。激光雷达的工作原理是拍摄数百万
大卫·马汉中校 大卫·马汉中校是佛罗里达州帕特里克空军基地第 3 支队第 1 航空队的指挥官。第 3 支队(载人航天飞行支持办公室)是唯一一个全职负责为美国载人航天飞行计划提供国防部支持的单位,负责全球宇航员救援、恢复和检索、医疗行动以及名义和应急着陆点支持。马汉中校于 2003 年通过中佛罗里达大学的空军后备军官训练团计划获得任命。他参加了加利福尼亚州范登堡空军基地的太空和导弹作战训练,并获得了维和人员和民兵 III 洲际弹道导弹武器系统的资格。2006 年,他在佐治亚州穆迪空军基地完成了专业本科飞行员培训,随后在德克萨斯州劳克林空军基地完成了培训。获得飞行徽章后,Mahan 中校的第一个作战飞行任务是在南卡罗来纳州查尔斯顿空军基地的 C-17A 上。完成作战任务后,他完成了两项 T-6A 教练飞行员的任务,在 T-6A Texan II 上教授未来的美国空军和国际飞行员以及作战系统官员。在担任现职之前,他曾担任第一航空队第 3 支队作战主任,负责全球宇航员救援、名义回收、太空舱回收、医疗行动和着陆点支持等行动。Mahan 中校已累计飞行超过 2,500 小时,并多次部署支持“伊拉克自由”、“持久自由”和“新黎明”行动。他从美国中央司令部联合作战中心为“坚定决心”和“自由哨兵”行动提供情报、监视和侦察支持。教育 2003 中佛罗里达大学文科学士学位 2003 阿拉巴马州麦克斯韦空军基地航空航天基础课程 2010 阿拉巴马州麦克斯韦空军基地中队军官学校 2011 新墨西哥州柯特兰空军基地飞机事故调查课程 2012 新墨西哥州柯特兰空军基地航空安全计划管理课程 2013 阿拉巴马州麦克斯韦空军基地空军指挥参谋学院(非住宿) 2014 佛罗里达州安柏瑞德航空大学航空学硕士学位 2020 弗吉尼亚州弗雷德里克斯堡联合人员恢复局人员恢复执行任务 1.2003 年 10 月 - 2004 年 4 月:学生,太空和导弹作战,第 392 战斗训练中队,范登堡空军基地,加利福尼亚州。2.2004 年 4 月 - 2005 年 10 月:洲际弹道导弹战斗人员,维和人员,第 400 导弹中队,F.E.沃伦空军基地,怀俄明州。3.沃伦空军基地,怀俄明州。2005 年 10 月 - 2006 年 6 月:F.E. 第 320 导弹中队民兵 III 洲际弹道导弹作战机组指挥官。
在采伐和道路设计中使用激光雷达地形测量的诱惑和陷阱 Finn Krogstad 和 Peter Schiess 论文发表于 2004 年 6 月 13-16 日在不列颠哥伦比亚省温哥华举行的 IUFRO 3.06 山地森林作业联合会议和第 12 届国际山地伐木会议摘要机载激光测高 (Lidar) 可以生成极其详细和准确的地形图,即使在被森林冠层遮挡的地面上也是如此。详细的激光雷达地形图可以识别可能的着陆地点、难以穿越的溪流、不稳定的土壤、难以穿越的边坡和有用的长凳。这些细节可以减少现场时间,指导道路设计选择更好的方案,并提高我们对成本估算的信心。然而,激光雷达测绘偶尔也会失败,这些失败的表现方式将决定激光雷达的可靠性和对道路设计的价值。我们讨论了首次使用激光雷达对雷尼尔山南部的塔霍玛州立森林进行测绘的经验。这种详细的地形测绘被用于森林作业设计,例如着陆点和道路位置,作为基于流域的采伐和运输计划的一部分。随后对基于激光雷达的办公室设计进行了实地验证。这种 DEM 在森林工程设计中取得成功的关键在于能够(或缺乏)区分地面点覆盖充足或边缘的区域,从而导致测绘细节优秀或错误。我们讨论了各种方法,这些方法可以识别激光雷达地面点覆盖边缘的区域,从而形成测绘承包商应遵守的第一组激光雷达数据收集要求。看到树冠下的情况木材采伐和道路规划中反复出现的一个问题是,用于采伐的树木可能会遮挡必须堆放原木和修建道路的地面。规划中常用的地形图基于航空照片,其中我们现在想要采伐的林分遮挡了我们必须规划的地面。因此,得到的地形图是顶部树冠的地图,带有假定树高的偏移量。不幸的是,树冠并不完全贴合地面,在采伐和道路规划中至关重要的细微地形变化并没有反映在最终的树冠顶部。地形通常包括土壤不稳定、岩石露头和不平坦的地形,这些可能会给采伐和道路带来困难。树冠还会遮挡可以作为方便着陆和道路位置的天然土丘和长凳。因此,这些地形图只能作为设计的一般指南,操作的关键要素需要基于现场验证。机载激光地形扫描 (Lidar) 的最新发展使得即使在森林树冠下也可以进行详细的地形测绘。激光雷达的工作原理是拍摄数百万
渔业部门是圣文森特和格林纳丁斯(SVG)的粮食安全和工作的重要来源。渔业对经济的贡献估计在直接雇用1,642人的GDP的0.5%至1.7%之间,占该国劳动力总劳动力的2.9%,其中3.5%是妇女。平均每年降落总数为1,414吨。SVG中的捕鱼部门的性质主要是很小的,主要是使用带有近海杂货店的传统齿轮,方法和船只,除了龙虾和海与海与海与海岸外,估计包括金枪鱼,鲭鱼在内的年度降落中的45%。小型渔业在支持生计,确保粮食安全并为当地社区的文化和经济结构做出贡献方面发挥着至关重要的作用。于1987年开始,在日本赠款援助的协助下,圣文森特和格林纳丁斯在金斯敦,卡利亚夸,小屋,巴鲁阿利,奥瓦利亚,贝奎亚,贝奎亚(Paget Farm),Canouan和Union Island建造了一系列渔业降落地点。随着时间的流逝,由于各种挑战,一些着陆点已经失修,导致渔业供应链(船舶到销售点)的食品安全标准,卫生和卫生状况的依从性降低。尽管如此,圣文森特和格林纳丁斯政府仍致力于增强海鲜安全制度,这被视为所有文森特人的粮食安全,健康和营养的组成部分,以及出口市场发展的关键。UBEC项目提供了进步这项计划的机会。同时,存在过时和/或分散的立法,监测食品传播相关疾病的弱点以及对社会构成的风险,法规的执行不足,预算分配,缺乏设施和受过培训的人员,还损害了包括渔业的有效粮食控制措施,监测相关疾病的弱点以及它们对社会构成的风险的弱点也受到破坏。世界银行释放蓝色经济项目(UBEC)的关键组成部分是开发卫生和植物检疫标准(SPS),并采取了增加国内和出口市场高质量海鲜生产的措施。UBEC提出的活动包括提高消费者的食品安全意识;满足进口国的监管要求;增加并使用技术和相关培训等。在这方面,2018年圣文森特和格林纳丁斯渔业和水产养殖政策要求开发跨政府机构的多年粮食卫生和质量检查服务开发计划1,旨在恢复全面的出口认证并根据用户薪酬原则引入既定企业的成本搜索。
太空运输系统,航天飞机运载机 HAER 编号 TX-116-L 第 5 页 此外,在记录时,有两个主要特征将两个 SCA 区分开来。第一个是飞机两侧靠近轨道器前支撑支柱的上层甲板窗户的数量;NASA 911 每侧有五个窗户,而 NASA 905 只有两个。第二个区别是 2012 年应用于 NASA 905 的乙烯基贴花。在 NASA 905 的每一侧、前门后部和主甲板窗户上方,有一系列图像,描绘了飞机搭载每个轨道器(企业号、哥伦比亚号、挑战者号、发现号、亚特兰蒂斯号和奋进号)和幻影鳐的次数;这些是 2012 年 3 月应用的。第二组贴花位于 NASA 905 两侧驾驶舱窗户的正下方;上面刻有参加轨道器最后一次渡轮飞行的 SCA 飞行员和飞行工程师的名字。14 历史:最初,航天飞机轨道器设计有吸气式发动机,用于将飞行器送入轨道和从太空返回;此外,发动机还可用于将轨道器从一个位置运送到另一个位置。然而,研究表明,这些发动机在设计上导致了重量问题。因此,工程师们开始研究将轨道器从潜在的远程着陆点运送到肯尼迪航天中心的替代方式。15 1973 年,NASA 正在考虑使用洛克希德制造的 C-5A 货机 16 和波音 747“巨型喷气式飞机”作为运送轨道器的潜在交通工具。1973 年 8 月,NASA 的 DFRC 授予波音公司一份价值 56,000 美元的合同,以研究使用 747 运送轨道器的可行性。该合同是波音公司提交的一份未经请求的提案的结果。这项为期 60 天的研究旨在确定此类运载机的作战要求、性能、成本、时间表和初步系统设计。17 1973 年 10 月,洛克希德公司获得了一份合同,内容包括模拟 C-5A 作为渡运机使用的风洞试验。轨道器比例模型的试验 14 Alan Brown,“NASA 905 上的新徽标描绘了渡运飞行历史”,2012 年 4 月 5 日,http://www.nasa.gov/centers/dryden/Features/sca_905_logos.html。此时,NASA 911 已退役。 Brewer,访谈,第 15 页。15 William G. Register,《747 空运航天飞机轨道器》,载于第十二届太空大会论文集,佛罗里达州可可海滩,1975 年 4 月 9-11 日(卡纳维拉尔技术协会理事会,1975 年),第 1-1 至 1-3 页。1972 年 4 月 14 日,肯尼迪航天中心被选为航天飞机的主要发射场。Jenkins,《航天飞机》,第 155 页。早在 1969 年 10 月,人们就认为肯尼迪航天中心也将成为航天飞机的主要着陆场。“12 寻求航天飞机控制系统研究”,Marshall Star,1969 年 10 月 22 日,第 4 页。16 C-5A 的原始版本由洛克希德公司于 1968 年至 1973 年间制造。这种大型军用运输机具有强大的空运能力,主要由美国空军使用。17 “波音获得穿梭渡轮合同”,X-Press,1973 年 8 月 3 日,第 2 页。
Hadley Max 500天设计参考任务(DRM)至Apollo 15 Hadley- Apennine地区:( 5。通过原位迈co-Architecture降低了上质量的需求)。L. Rothschild 1,J。头2,D。R. Scott 2,B。Botwright 2,C。Maurer 3,D。Eppler 4,R。Creel 5,R。Martin 1,W。Mickey 2,D。Fryd 2,M。Daniti 2,C。Wu 2。1 NASA AMES研究中心,CA山景城,Providence RI 2。 3 Redhouse Studio,Cleveland OH,4 San Antonio Mountain Consulting,休斯敦德克萨斯州5号,阿拉巴马州亨茨维尔(NASA MSFC ret。))1 NASA AMES研究中心,CA山景城,Providence RI 2。3 Redhouse Studio,Cleveland OH,4 San Antonio Mountain Consulting,休斯敦德克萨斯州5号,阿拉巴马州亨茨维尔(NASA MSFC ret。)(james_head@brown.edu)。致力于解决上级问题的解决方案:我们从Hadley Max 500天设计参考任务(DRM)概念背景[1]开始,并开始呼吁Apollo 15(A15)任务实现目标和目标,结合了A15 Mission Mission Mission成果的扩展目标和目标,从A15 Mission Crounse和最新的地区地球地球地球层面和目标[2]结合使用。然后,我们确定了Hadley Max DRM [3]的科学兴趣区域(ROSI),并使用了这些专业要求来定义任务体系结构[4],以及更详细的Hadley Max Max Maxs Design和Traverse计划活动[5]。在这里,我们解决了长期持续和人类在月球上的最重要问题之一,并同时进行了科学探索成功:使技术能够减轻支持基础和基础勘探所必需的巨大且连续的质量要求的关键[4] [4]。在这里,我们概述了我们在“ Myco-Architecture”以及未来目标上进步的演变。1。2。3。4。5。In order to help alleviate this “upmass roadblock”, we have pursued two promising technolo- gies: 1) Myco-Architecture [6-9], where building materi- als can be “grown in situ ” in order to significantly mini- mize upmass penalties, and 2) Inflatable Structural Ele- ments [10], in which low-volume, low-mass inflatables can be combined with Myco-architecture以产生广泛的原位外壳。定义所需的栖息地,外壳和相关的建筑要素:作为重新检查的建筑要素的基准,我们呼吁Hadley Max Max DRM架构[4]和Traverse Planning [5]研究产生这些基线元素的研究。土地垫(LP):对于人类和机器人任务;像helo垫,平坦,没有土壤反冲洗污染物。初始基础结构(IBS):生活和工作的hab itat;遵循有登录模块(LM)的初始阶段。进化基础结构(EB):较大规模,工作/生活活动的分离;现场科学活动; IBS演变为尘埃液压结构。前哨基地:远程科学基础(RSB):以IBS为模型,但位于距离着陆点> 10公里的半径范围内。最多需要大约5个RSB才能深入到原位科学活动。增加数量的精确率。“小马快车”站(PEX):这些是农历“幼崽帐篷”,它将是远程科学基地(RSB)的前体,然后是通往最终远程科学基地(RSB)的地球日睡眠站。样品存储站,地球物理站;可以通过CLPS任务收集/样本进行重新供应。6。
前言 我非常高兴地介绍印度国家空间研究委员会 (INCOSPAR)、印度国家科学院 (INSA) 和印度空间研究组织 (ISRO) 为 2024 年 7 月 13 日至 21 日在韩国釜山举行的第 45 届 COSPAR 科学大会准备的《印度空间研究报告》。该报告概述了 2022 年 1 月至 2023 年 12 月期间印度在近地空间、太阳、行星科学和天体物理学几个领域取得的重要成就、成果和研究活动。本报告还介绍了空间科学研究能力建设活动、空间科学和技术学术课程、空间科学和技术方面的国家和国际合作、在各个研究所和中心建立的为印度空间科学探索和研究做出贡献的实验室和设施,等等。印度空间科学界一直活跃于天文学和天体物理学、太阳物理学、空间天气和日地关系、空间和大气科学、行星科学、地磁学和地球科学等领域。本报告介绍了海洋学、大气结构和动力学、云和对流系统、气溶胶、辐射和微量气体、天气和气候变化、中层大气、电离层、磁层、太阳风和空间天气、月球和行星研究、太阳和太阳系天体、恒星、星系、银河系和河外天文学和宇宙学等领域的研究重点。在行星科学领域,2023 年 8 月 23 日,月船三号在月球南部高纬度 Shiv-Shakti 点软着陆,使印度成为第四个掌握月球软着陆技术的国家,但却是第一个在南极地区实现软着陆的国家。月船三号收集了着陆点附近元素组成、热物理性质、等离子体环境和地震活动等一个农历日的数据。成功演示了从月球表面跳跃、从月球轨道脱离到地球轨道,这将为未来的样品返回铺平道路。月船二号轨道器已运行五年,为月球科学提供了新的见解。AstroSat 是印度首个多波长太空天文观测站,已于 2023 年 9 月 28 日成功完成八年运行。该观测站自 2016 年 10 月起以提案方式运行,并向天文学界开放。目前,AstroSat 拥有来自 50 个国家的约 2700 名用户。在最初的八年中,AstroSat 观测已产生了 440 多份同行评审出版物,以及 1500 多份会议论文集、GCN 通告、天文学家电报和其他非同行评审出版物。在此期间,AstroSat 数据得出的一些主要科学成果包括利用 UVIT 发现遥远矮星系中的扩展发射,2018 年爆发衰退阶段,变貌活跃星系 NGC 1566 的光谱跃迁,以及对 OJ 287 火焰星光谱状态的多波长观测。Aditya-L1 于 2023 年 9 月 2 日发射,是印度首次从日地系统拉格朗日点 1 (L1) 研究太阳的太空任务。该任务搭载七个有效载荷来观察光球层、色球层和日冕,为观察太阳活动及其对空间天气的影响提供了更大的优势。Aditya-L1 在 2024 年 5 月捕获了太阳事件(耀斑和日冕抛射)。印度的 X 射线偏振测量任务 XPoSat 于 2024 年 1 月 1 日发射,已开始进行科学观测,其中包括由 XPoSat 上的 X 射线偏振仪 POLIX 生成蟹状脉冲星的脉冲轮廓。我感谢为编写本报告而为其各自研究所和部门开展的空间研究活动提供意见的科学家。我感谢印度空间研究组织总部班加罗尔科学计划办公室代表 INCOSPAR 编撰和编辑本报告的辛勤工作。