集成惯性/相机系统的视轴校准 Mohamed M. R. Mostafa Applanix Corporation 85 Leek Cr., Richmond Hill Ontario, Canada L4B 3B3 电话:(905) 709-4600 分机 274 电子邮件:mmostafa@applanix.com 个人简介 Mohamed Mostafa 负责 Applanix Corporation 机载系统的研究和开发,并担任美国摄影测量和遥感学会直接地理参考委员会主席。他分别于 1991 年和 1994 年获得亚历山大大学理学学士学位和理学硕士学位,并于 1999 年获得卡尔加里大学博士学位。他的研究兴趣是使用多传感器系统进行地图绘制。摘要 集成成像/惯性系统的视轴校准是地图制作的关键因素,尤其是在数字成像传感器的情况下。因此,本文的重点是使用不同方法进行视轴校准。介绍了两种视轴校准方法,即机载和地面方法。传统的机载视轴校准已成功使用了几年,但它不能满足某些机载数字系统的某些操作参数。或者说,这里介绍的地面校准方法从未在典型的数字地图制作中使用过。在本文中,针对数字多传感器系统介绍了机载和地面视轴校准的概念。提供了数据结果和分析,以强调使用这两种方法实现的准确性。1.简介 过去几年,测绘行业一直致力于实施新技术先进的多传感器系统进行地图制作。这些系统目前正在取代传统的航空测绘系统,用于资源测绘和机载遥感等应用,并开始在工程和地籍测绘等其他应用中展开竞争。通常,多传感器数字系统由一个或多个用于图像采集的数字相机系统和 GPS 辅助惯性系统组成
假设飞行员俯冲投掷弹药,并让飞机在垂直于地面(无滚转)的平面上飞行(图 1a 和 1b)。P 边和 R 边之间的夹角是飞行路径角或俯冲角 e。如果飞机以恒定的“G”载荷飞行,其飞行路径等于 e 的余弦,即从滚转到撞击地面。应该认识到,除了“飞行时间零的射弹”或瞄准线在 P 边上方的弹药之外,飞机撞击点无论风向如何都在目标之外。这是由于重力、空气阻力或射弹阻力以及提供分离的弹射力。这些变量确定或定义了固定的炸弹射程,这是“破折号 34”表格中显示的所有弹道数据的基础。作为战斗机飞行员,我们对飞行路径数据下方的俯仰角至关重要。这些数据实际上只不过是由炸弹射程、释放高度定义的三角形的角度解。和俯冲角度。用投掷器瞄准释放点。在 P 侧下方某处。除了理论上如上所述。并且所有参数都满足。人们应该理所当然地期待一个靶心。让我们假设攻角。~。已经解决了
军用雷达罩性能和验证测试 Thomas B. Darling 客户支持副总裁 MI Technologies 系统设计师付出了令人难以置信的努力,为我们的军队生产最先进的雷达和其他基于射频的功能。现代雷达系统用于各种目的,包括但不限于:天气评估;导航;地形跟踪/地形规避;武器火力控制;电子战;敌人跟踪、监听和识别等。这些雷达系统依赖于极高的测量精度、可重复性和准确性,都需要防风雨保护。虽然许多人会想到这些复杂的雷达系统产生的奇特硬件和性感的屏幕截图,但大多数人不会想到这些系统的一个极其关键的组件:雷达罩或雷达罩。当人们考虑到这些系统对我们的军队正常运行的迫切需要以及冲突期间的恶劣条件时,这个组件保护着重要的系统,这可能是生存和灾难之间的区别。最知名的雷达罩是位于飞机或导弹机头的雷达罩。然而,许多军事应用和新的商业应用正在将微波系统定位在飞机的其他位置。这些通常需要奇怪的形状来保护射频系统并具有足够的空气动力学性能。军用天线罩测试自然比商业应用复杂得多。典型测量参数用于表征天线罩性能的一些典型测量参数包括:传输效率 (TE) 传输效率是通过天线罩的微波能量的百分比,通常在不同角度区域测量(通常代表雷达系统实际使用的天线罩面积)。它是通过比较两种不同条件下测试天线接收的功率水平来测量的。在天线罩关闭的情况下进行参考测量,然后在雷达天线上安装天线罩后再次进行测量。将得到的数据绘制在天线罩的表面上。虽然理想情况下是“透明的”,但所有天线罩在射频信号通过时都会由于反射、衍射、吸收、折射和去极化等因素而产生损耗。波束偏转 (BD)/ 瞄准线偏移 (BS) 波束偏转是指微波信号通过天线罩时传播方向的变化。如果考虑与跟踪快速移动的敌方目标或低空飞行、快速移动的飞机的地形规避相关的几何形状,那么由天线罩引入的即使非常小的角度误差也会产生重大影响。(对于具有跟踪零点的测试天线,瞄准线偏移这一术语通常与波束偏转互换使用。因此,波束偏转可以作为用于总波束情况的术语。) 反射率 反射率是雷达天线端口反射系数幅度的变化,这是由于天线罩的存在而引起的。这是使用带有远程头的反射计测量的。反射系数是在天线罩安装前后测量的,此时天线指向无反射环境(例如消声室或室外靶场)。理想情况下,此测量与雷达天线的指向方向无关。
13.摘要(最多 200 个字)本报告描述了 AEDC 连续流高超声速风洞中用于静态稳定性、压力、传热、材料/结构、边界层过渡和电磁波测试的程序。由于定义高超声速飞行器的热环境非常重要,因此特别强调传热技术。概述了高超声速飞行器部件开发中使用的材料/结构测试方法。不幸的是,预测过渡的方法已经困扰了空气动力学家三十多年,并且仍有许多未解问题。本报告简要介绍了影响过渡的许多参数,并为有兴趣专门研究此主题的人提供了大量参考资料。讨论了使用三重球的方法,并提供了说明性数据。电磁波测试是一种相对较新的测试技术,它涉及多个学科的结合:气动热力学、电磁学、材料/结构和高级诊断。这项新技术的本质是处理电磁波(RF 或 IR)在通过以高超音速飞行的导弹的弓激波、流场和电磁(EM)窗口时的传输和可能的失真。14.主题术语 电磁波、导弹导引头系统、高超音速飞行器、边界层、瞄准线误差、机鼻雷达罩
图 7 分离效应定义 13 图 8 平视显示器上的目标指示 14 图 9 弹道精度验证过程 15 图 10 精度与资源支出之间的权衡 16 图 11 HUD 瞄准线 19 图 12 HUD 视差误差 20 图 13 挂载 12 枚 MK 和 LDGP 炸弹的 F-15E 23 图 14 空速和配置对分离效应的影响 24 图 15 建议的武器数量 27 图 16 系统检查 — 第 1 次通过 29 图 17 系统检查 — 第 2 次通过 30 图 18 系统检查 — 第 3 次通过 31 图 19 典型陆地范围 33 图 20 Astrodome 内的电影经纬仪 34 图 21 电影经纬仪结构 35 图 22 TSPI 原始数据采集36 图 23A MK 82 发射的电影经纬仪照片覆盖范围 37 图 23B Alpha Jet 的电影经纬仪照片覆盖范围 37 图 24 29 型电读系统 38 图 25 Contraves 半自动胶片读取器 38 图 26 典型撞击图 41 图 27 距离增量 46 图 28 自由流阻力验证 46 图 29 瞄准点修正撞击 50 图 30 CEP 定义 51