表 2 详细列出了 DO-160G 第 22 节雷电感应瞬变敏感度标准中针对引脚注入测试的波形 3、波形 4/波形 1 和波形 5A 所规定的开路电压 (V OC ) 和短路电流 (I SC )。DO-160G 4 级测试的峰值电流远大于标准工业浪涌 IEC 61000-4-5 峰值电流。DO-160G 标准的波形形状和上升/衰减时间明显长于 IEC 61000-4-5 标准所规定的波形形状和上升/衰减时间,如图 2 所示。由于 DO-160G 第 22 节雷电标准涉及大量能量,因此使用外部 33 Ω 或 47 Ω A 引脚和 B 引脚总线限流电阻对 ADM2795E-EP 进行测试,以测试至 GND 2 。除了 ADM2795E-EP 集成 EMC 保护电路外,还需要这些电阻。但是,当测试到 GND 1 时,不需要限流电阻。ADM2795E-EP i 耦合器隔离技术可在出现这些极端瞬变时保护设备。
第二种方法是使用集成解决方案,将数字隔离器和 RS-485 收发器整合在一个封装中。ISO1410 将 ISO7741 的核心隔离技术和 THVD1410 收发器整合在一个封装中。核心隔离技术能够实现 1500 Vpk 连续工作电压、增强型 5 kVrms 隔离额定值和 100 kV/us 典型共模瞬变抗扰度 (CMTI)。集成收发器在总线上提供高抗噪性,符合 Profibus 标准,具有 16 kV IEC 静电放电 (ESD) 和 4 kV IEC 电气快速瞬变 (EFT),即使在工厂车间等嘈杂环境中也能确保可靠通信。与分立解决方案相比,ISO1410 具有额外的优势,即逻辑侧电源更宽,支持 1.71 V 至 5.5 V 以启用较低逻辑电平 MCU,总线侧电源支持 3 V 至 5.5 V。
电磁兼容性 静电放电抗扰度试验 6 kV(接触) 级别 3 IEC 61000-4-2 静电放电抗扰度试验 8 kV(空气中) 级别 3 IEC 61000-4-2 电磁场敏感性 10 V/m(80 MHz 至 1 GHz) 级别 3 IEC 61000-4-3 电气快速瞬变/脉冲群抗扰度试验 1 kV 电容式连接夹) 级别 3 IEC 61000-4-4 电气快速瞬变/脉冲群抗扰度试验 2 kV 直接) 级别 3 IEC 61000-4-4 1.2/50 µs 冲击波抗扰度试验 1 kV 差模) 级别 3 IEC 61000-4-5 1.2/50 µs 冲击波抗扰度试验 2 kV 共模) 级别 3 IEC 61000-4-5 传导 RF 干扰 10 V 0.15 ...80 MHz 3 级 IEC 61000-4-6 电压暂降和中断抗扰度试验 0 % 1 个周期) IEC 61000-4-11 电压暂降和中断抗扰度试验 70 % 25/30 个周期) IEC 61000-4-11 传导和辐射发射 B 级 EN 55022
浪涌保护 FH R PTZ 摄像机:TVS 6000 V 防雷、浪涌保护、电压瞬变保护 PT 单元电源:2000 V(线对地 2000 V,线对线 1000 V) 视频信号:1000 V(线对地 1000 V,线对线 500 V)
4.2.2.3.1 地面启动...................................................................................................................... 40 4.2.2.3.2 空中启动...................................................................................................................... 40 4.2.2.3.3 启动限制...................................................................................................................... 40 4.2.2.3.4 启动程序...................................................................................................................... 40 4.2.2.3.5 自动重新点火............................................................................................................. 40 4.2.2.4 停止............................................................................................................................. 40 4.2.2.5 低功率条件............................................................................................................. 40 4.2.2.5.1 慢车推力或功率 - (地面或飞行慢车).............................................................................. 40 4.2.2.5.2 空载条件............................................................................................................. 40 4.2.2.6 稳定性............................................................................................................................. 40 4.2.2.7瞬变.................................................................
量子算法已经发展成为高效解决线性代数任务的算法。然而,它们通常需要深度电路,因此需要通用容错量子计算机。在这项工作中,我们提出了适用于有噪声的中型量子设备的线性代数任务变分算法。我们表明,线性方程组和矩阵向量乘法的解可以转化为构造的汉密尔顿量的基态。基于变分量子算法,我们引入了汉密尔顿量变形和自适应分析,以高效地找到基态,并展示了解决方案的验证。我们的算法特别适用于具有稀疏矩阵的线性代数问题,并在机器学习和优化问题中有着广泛的应用。矩阵乘法算法也可用于汉密尔顿量模拟和开放系统模拟。我们通过求解线性方程组的数值模拟来评估算法的成本和有效性。我们在 IBM 量子云设备上实现了该算法,解决方案保真度高达 99.95%。2021 中国科学出版社。由 Elsevier BV 和中国科学出版社出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
奇异价值分解对于工程和科学领域的许多问题至关重要。已经提出了几种量子算法来确定给定基质的奇异值及其相关的奇异向量。尽管这些算法是有希望的,但是在近期量子设备上,所需的量子子例程和资源太昂贵了。在这项工作中,我们提出了一种用于奇异值分解(VQSVD)的变分量子算法。通过利用奇异值的变异原理和ky fan定理,我们设计了一种新型的损失函数,以便可以训练两个量子神经网络(或参数化的量子电路)来学习奇异向量并输出相应的奇异值。更重要的是,我们对随机矩阵进行VQSVD的数值模拟以及其在手写数字的图像压缩中的应用。最后,我们讨论了算法在推荐系统和极地分解中的应用。我们的工作探讨了仅适用于Hermitian数据的量子信息处理的新途径,并揭示了矩阵分解在近期量子设备上的能力。
摘要:椎间盘 (IVD) 退化可引起慢性下腰痛 (LBP),从而导致残疾。尽管在治疗椎间盘源性 LBP 方面取得了重大进展,但当前治疗的局限性引发了人们对生物方法的兴趣,包括生长因子和干细胞注射,作为因 IVD 退化 (IVDD) 导致慢性 LBP 患者的新治疗选择。基因疗法为 IVDD 治疗带来了令人兴奋的新可能性,但治疗仍处于起步阶段。使用 PubMed 和 Google Scholar 进行文献检索,以概述 IVDD 基因治疗的原理和现状。回顾了体外和动物模型中基因向退化椎间盘细胞的转移。此外,本综述描述了 RNA 干扰 (RNAi) 基因沉默和成簇规律间隔短回文重复序列 (CRISPR) 系统基因编辑以及哺乳动物雷帕霉素靶 (mTOR) 信号在体外和动物模型中的应用。近年来重大的技术进步为新一代椎间盘内基因治疗慢性椎间盘源性腰痛打开了大门。