摘要 受活细胞信号网络启发的可编程化学电路是开发自适应和自主自组装分子系统和材料功能的一种有前途的方法。分子水平上已经取得了进展,但将分子控制电路连接到自组装较大元素(如胶体)以进行实空间研究和获取功能材料的方法很少,而且可能会受到动力学陷阱、絮凝或困难的系统集成协议的影响。我们在此报告了一种立足点介导的 DNA 链置换反应网络,该网络能够自主地将两种不同的微凝胶引导到瞬态和自调节的共组装中。微凝胶被 DNA 功能化并成为网络的基本组成部分。电路设计的灵活性允许通过在核心电路的上游或下游链接额外的电路模块来安装延迟阶段或加速器。该设计提供了一种适应性强且强大的方法来调节其他构建块以实现高级仿生功能。
摘要:随着能源部门脱碳的努力,电力需求不断增长,其中大部分将由碳中和未来的可再生能源提供。为了平衡大多数可再生能源固有的可变性,需要某种形式的能源储存。在本文中,简要回顾了当前的系统,特别关注卡诺电池,其运行特性、长寿命和低环境足迹使其在日常能源储存方面具有竞争力。开发了一个瞬态模型来模拟卡诺电池的完整运行,该电池由蒸汽压缩热泵和有机朗肯循环以及显热储存组成。确定了关键性能参数,并通过平衡 25 种存储温度范围和热交换器夹点配置的成本和性能进行了帕累托优化。结论是,更宽的存储范围和更高的夹点可以降低成本,因为它们会减小水箱和热交换器的尺寸,并降低效率,因为会为热泵和热机产生不利的温度梯度。确定了一个帕累托前沿,它由 10 种配置组成,这些配置可以优化一个标准,或者平衡两个或多个标准,并得出关于每种配置适用性的结论。
摘要 - 我们提供了通过利用一类近距离飞行时间(TOF)距离传感器捕获的瞬态直方图来恢复平面场景几何形状的方法。瞬态直方图是一个一维的时间波形,它填充了入射在TOF传感器上的光子的到达时间。通常,传感器使用专有算法处理瞬态直方图以产生距离估计值,距离估计值通常在几种机器人应用中使用。我们的方法直接利用了瞬态直方图,以使平面几何形状能够更准确地恢复,仅使用专有距离估计值,并且平面表面的反照率的一致恢复,而单独的距离估计是不可能的。这是通过可区分的渲染管道来完成的,该管道模拟了瞬态成像过程,从而可以直接优化场景几何形状以匹配观测值。为了验证我们的方法,我们从广泛的观点中捕获了八个平面表面的3,800个测量值,并表明我们的方法在大多数情况下都以数量级优于专有距离基线的基线。我们演示了一种简单的机器人应用程序,该应用程序使用我们的方法感知与安装在机器人臂端效应器上的传感器的平面表面的距离和斜率。I. i tratoduction o ptally of飞机近距传感器最近已广泛使用场景瞬变。尽管这些传感器具有许多理想的属性,但现有的机器人应用程序不利用瞬态直方图,而是依靠低分辨率(最多最多这些传感器通过用光脉冲照亮场景,并在瞬态直方图中从场景中重新转移到场景中,从而测量该脉冲的形状,如图1。这些瞬态传感器在机器人技术中的使用是由于它们可靠地报告较大范围内(1cm -5m)的距离估计值,同时较小(<20 mm 3),轻量级和低功率(按测量的毫米级订单)[1],[2],[2]。由于其形式,可以将瞬态传感器放置在较高分辨率3D传感器无法的位置,例如在机器人操纵器的抓地力或链接上,或在非常小的机器人上。
瞬态结构在生物系统中发挥着多种重要作用。与构成生物组织骨架的静态结构不同,瞬态结构仅出现在特定的空间和时间尺度上,以在生命周期中履行其职责。尽管人工分子自组装研究领域取得了重大进展,但构建功能性瞬态结构仍然具有挑战性。本文报道了通过不利于组装的主客体相互作用形成瞬态配位自组装结构及其荧光。发光配体和环糊精之间的主客体相互作用极大地改变了配位自组装的动力学,从而形成了瞬态结构。与典型的单体发射在紫外区域的静态平衡结构不同,瞬态自组装形成准分子,从而导致可见光发射。更有趣的是,瞬态结构的生命周期可以通过改变主客体比、配体金属比以及温度来轻松调节。这使得创建模拟植物在不同生命阶段生长的生命模式成为可能。因此,可以预见,瞬态分子自组装的创建将在具有动态功能先进材料的分子自组装领域开辟新范式。
了解电热 SiC 功率 Mosfet 在短路等极端异常操作中的行为是认证的主要需求,尤其是对于关键或长寿命应用。但模拟电子元件中的短路非常困难,因为我们需要一个完全电热的多物理模型。我们还需要模拟顶部铝电极的熔化。我们使用“表观热容量”方法来模拟这种熔化,该方法考虑了潜热和熔化过程中所需的吸收能量。因此,本文首次提出了一个数值有限元模型,该模型在 2D 中完全模拟了 SiC 功率晶体管在短路状态下的动态电热行为。与现有的 1D 模型相比,该模型的几何精度提供了显着的附加值。
声辐射力 (ARF) 是由声波产生的稳定力,是实现微物体操作的一种便捷方式,例如微样本分离 [1-3] 和富集 [4]、细胞分选 [5,6] 和单细胞操作 [7]。与使用时间周期声场相比,使用脉冲和波列等瞬态激励可以实现更精确的操作 [1-7]。首先,脉冲声操作受瑞利声流的干扰较小 [8,9],因为辐射力比声流建立得快得多 [10,11]。其次,使用声波包可以定位声干涉图样,从而控制声捕获区域的空间范围 [12]。事实上,驻波比行波施加了大得多的辐射力(在小颗粒极限内),激光制导声镊(LGAT)[13] 利用这种干涉原理,创造了一种混合辐射力景观,该景观将高振幅压电声场(强,Z 场)和光图案光生声场(弱,L 场)耦合在一起。混合场保留了 L 场的空间信息和 Z 场的强度。
生物可吸收电子系统代表了一类新兴技术,因为它们能够在生物环境中溶解、化学降解、分解和/或以其他方式无害地物理消失,可作为临时植入物的基础,避免二次手术取出程序。聚酐基聚合物可用作此类系统的疏水封装层,作为瞬态电子学更广泛领域的一个子集,其中生物降解最终通过断链发生。涉及在不同 pH 值和/或温度下浸入磷酸盐缓冲盐水溶液的系统实验研究表明,溶解是通过表面侵蚀机制发生的,几乎没有膨胀。这种聚合物的机械性能非常适合用于柔软、灵活的设备,其中可以通过基于模具的光聚合技术进行集成。对聚合物性能对单体组成和渗透速率对涂层厚度的依赖性的研究揭示了一些潜在的影响。简单的演示说明了在完全浸入接近生理条件的水溶液中时,底层可生物降解电子系统能够维持运行数小时至一周的时间。在动物模型中进行的系统化学、物理和体内生物学研究表明,没有毒性或其他不良生物反应的迹象。
摘要气候科学和天气风险管理的主要目标是准确地对极端事件的物理和统计数据进行建模。这两个目标在根本上是矛盾的:计算模型的分辨率越高,越来越昂贵的是捕获分布尾部准确统计的合奏。在这里,我们专注于在空间和时间上局部的事件,例如大降水事件,这些事件可能会突然开始并迅速腐烂。,我们比直接气候模型模拟更有效地推进了对此类事件进行采样的方法。我们的方法结合了两种现有方法的元素:自适应多级拆分(AMS),这是一种罕见的事件算法,产生严格的统计数据,但无法增强突然的,瞬态极端的采样;和“合奏增强”,它产生了这些事件的物理上合理的故事情节,而不是它们的统计数据。,我们通过在集合提升的方法之前在事件发作之前很好地拆分轨迹来修改AM。早期分裂需要一个降低效率的拒绝步骤,但对于使用Lorenz -96模型放大和多样化的模拟事件至关重要,为此我们证明了对极端局部能量波动的提高采样大约相对于直接采样的10倍。我们的方法与以前的算法有关,包括子集模拟和预期的AM,但明确定制的是处理由混乱的行进波造成的爆发事件。我们的工作朝着有效地在大气模型中有效采样这种瞬时的局部极端的目标取得了进步。
¾ 采用 CMOS 工艺制造,低功耗 ¾ 很宽的工作电压范围( V DD =2.4V ~ 15V ) ¾ 最大到 12 位三态地址管脚或 6 位数据输出管脚 ¾ SD827 2B 解码可选择锁存型(后缀- L )和瞬态型(后缀- M )数据输出 ¾ 封装形式为 DIP18 、 SOP18 、 SOP20 或 CHIP (裸芯片)
摘要 - 本文提出了一种用于在线监视直流链接电容器的合适的灰色盒方法。发现AC/DC和DC/DC转换器中DC-Link电压的瞬时行为类似于并行RLC电路的零状态响应。此外,可以选择转换器的大信号瞬态轨迹的阻尼因子α(与电容有关)可以选择作为电容器的新健康指标。基于此,提出了一个非感官的瞬态等效电路模型(TECM)的灰色盒方法,该方法可以实现对DC-Link电容器的条件监视(CM),并且对详细拓扑和控制信息的依赖性最小。此外,它具有相对较高的适用性和极低的采样频率要求。采用AC/DC系统和DC/DC系统作为案例研究,模拟结果表明该建议的方法适用于具有不同负载类型的转换器。此外,选择商业电源作为实验案例。实验结果表明,阻尼因子α和DC-Link电容的估计误差小于1%。此外,给出了两个典型的白盒系统应用程序案例和一个灰色盒系统,以进一步说明该方法的实现。