在直流微电网 (dc MG) 中,直流链路电容器非常小,无法提供固有惯性。因此,在负载变化或电力资源波动的不确定波动期间会出现较大的电压偏差。这会导致电压质量下降。为了克服低惯性问题,本文提出了一种快速响应的能量存储系统,例如超级电容器,它可以通过某些特定的控制算法模拟惯性响应。双向直流-直流转换器用于将超级电容器能量存储连接到直流 MG。所提出的控制方案由虚拟电容器和虚拟电导组成。它在内环控制中实现,即电流环控制足够快地模拟惯性和阻尼概念。为了研究直流 MG 的稳定性,推导了一个全面的小信号模型,然后使用系统的根轨迹分析确定了可接受的惯性响应参数范围。通过数值模拟证明了所提出的控制结构的性能。
6.1 Absolute Maximum Ratings........................................ 4 6.2 ESD Ratings............................................................... 4 6.3 Recommended Operating Conditions......................... 5 6.4 Thermal Information.................................................... 5 6.5 Electrical Characteristics............................................. 6 6.6 Switching Characteristics............................................ 7 6.7 Typical特征........................................................................................................................................................................................................................................................................................... 18
- SOL 101 – 线性静力学 - SOL 103 – 正常模式 - SOL 105 – 屈曲 - SOL 106 – 非线性和线性静力学 - SOL 107 – 直接复特征值 - SOL 108 – 直接频率响应 - SOL 109 – 直接瞬态响应 - SOL 110 – 模态复特征值 - SOL 111 – 模态频率响应 - SOL 112 – 模态瞬态响应 - SOL 129 – 非线性和线性瞬态响应 - SOL 153 – 静态结构和/或稳态传热分析,选项为:线性或非线性分析 - SOL 159 – 瞬态结构和/或瞬态传热分析,选项为:线性或非线性分析 - SOL 200 – 仅具有灵敏度分析选项的设计优化 - SOL 401 – 多步骤结构解决方案,支持静态(线性或非线性)子工况和模态(实特征值)子工况 - SOL 402 – 多步骤结构解决方案,支持子工况类型组合(静态线性、静态非线性、非线性动态、预载、模态、傅立叶、屈曲)并支持大旋转运动学 - SOL 601/106 – 高级非线性和线性静力学 - SOL 601/129 – 高级非线性和线性瞬态响应 - SOL 701 – 显式非线性
图 1. 离子选择性固态有机电化学晶体管。 (a) ExG-SSOECT 的结构示意图和等效电路,以及半导体聚合物 PEDOT:PSS、离子液体 [MTEOA][MeOSO 3 ] 和 Na + 、K + 、Ca 2+ 离子选择膜的化学结构。 (b) 输出特性。 (c) 传输特性。 (d) 在恒定 V DS = -0.5 V 下进行的瞬态响应保持测试,脉冲 V GS = -0.4 – 0.8 V 最多 5000 次循环。 (e) 上升时间为 51.4 µs 的瞬态响应。 (f) 在 V DS = -0.1 V 时使用电流脉冲法进行迁移率估计。
网络求解和等效电路 瞬态响应 MOSFET 逆变电路 CMOS 逻辑电路 CMOS 瞬态分析 BJT 电路 晶体管 - 晶体管逻辑 运算放大器 非线性运算放大器电路 频率响应
电路元件 - 能量存储和动态。欧姆定律、基尔霍夫定律、简化串联/并联电路元件网络。节点分析。蒂维南和诺顿等效、叠加。运算放大器。一阶 RLC 电路中的瞬态响应。通过求解微分方程得到的解。二阶 RLC 电路中的瞬态响应。状态方程、零输入响应、零状态响应。使用 MATLAB 求解状态方程。正弦信号:频率、角频率、峰值、RMS 值和相位。直流与交流、平均值与 RMS 值。稳定状态下具有正弦输入的交流电路。在交流电路分析中使用相量和复阻抗。交流功率(实功率、无功功率、视在功率)、功率因数、超前/滞后。共振。变压器和耦合线圈。信号和电路的拉普拉斯变换。网络函数和频率响应。周期信号和傅里叶级数。滤波器设计简介。非线性电路和小信号分析简介。
电路元素 - 能源存储和动力学。ohm定律,基希霍夫的定律,简化了系列/并行电路元素的网络。节点分析。thivenin和Norton等效物,叠加。操作放大器。一阶RLC电路中的瞬态响应。通过求解微分方程的解决方案。二阶RLC电路中的瞬态响应。状态方程,零输入响应,零状态响应。使用MATLAB求解状态方程。正弦信号:频率,角频,峰值,RMS值和相位。DC VS AC,平均值与RMS值。AC电路具有稳态的正弦输入。在交流电路分析中使用相量和复杂阻抗。交流功率(真实,反应性,明显),功率因数,领先/滞后。共鸣。变压器和耦合线圈。拉普拉斯的信号和电路转换。网络功能和频率响应。周期性信号和傅立叶系列。过滤器设计简介。非线性电路和小信号分析的简介。
Crane 压力传感器采用蓝宝石硅基传感技术,具有出色的精度、可靠性和稳定性。直接位于压力膜片上的集成温度传感器可提供最佳温度补偿。Crane 压力传感器比传统的机械共振型传感器尺寸更小,耗电量更少,同时提供更好的热瞬态响应。出色的重复性和稳定性使用数字补偿可将异常精度提高到满量程的 0.01% 以内。