legged Robotics最近已转向基于高级优化的控制方法,例如模型预测控制(MPC),以产生敏捷和节能的运动。通过将控制问题作为优化任务,机器人系统可以解释复杂的机器人动态和操作约束,包括关节限制和执行器功能。但是,高性能操作也需要严格考虑板载电池限制。这项工作提出了一种经验得出的锂离子电池模型,该模型捕获了瞬态电压下垂和时间依赖的内部电池状态,从而更准确地预测了可行的动力传递。此外,定制的高功率电池组旨在满足MIT类人动物的功率需求,强调功率密度,安全性和可维护性。尽管本文中介绍的工作并未将电池模型整合到轨迹优化框架中,但它为未来的研究建立了基础,旨在将电池和机器人动力学在机器人控制中逐渐发展。最终,这种方法将通过确保计划的轨迹尊重物理和电化学约束来促进更安全,更有能力的腿部机器人。
课程目标:1。学习EV和车辆力学的基础知识2。了解EV架构并研究储能系统概念3。推导电池模型并了解不同类型的电池及其充电方法4。学习DC-DC转换器的控制预赛。单元I内燃机9 0 9 IC发动机,BMEP和BSFC,车辆燃油经济性,排放控制系统,柴油排气排放的处理,内燃机和电动汽车的比较,光,中型和重型全电动车的审查。II单元电动汽车和车辆力学9 0 9电动汽车(EV),混合动力汽车(HEV),发动机评级 - EV与内燃机内燃烧发动机车辆的比较 - 车辆力学的基本原理。 III单元电池建模,类型和充电9 0 9电池和混合动力车辆中的电池 - 电池基础知识 - 电源板参数。 类型 - 铅酸电池 - 镍 - 卡德米电池 - 镍金属水合(NI MH)电池 - 锂离子电池 - Li-polymer电池,锌 - 空气电池,钠硫硫磺电池,氯化钠,氯化钠,研究和开发高级电池的开发。 电池建模,电路模型。 电池组管理,电池充电。 第四单元控制预序9 0 9 0 9控制设计初步 - 简介 - 转移功能 - 一阶和二阶系统的Bode图分析 - 稳定性 - 稳定性 - 瞬态性能 - 增强转换器的瞬态性能传递函数 - 增益边距和相位边缘研究 - 开放式循环模式。II单元电动汽车和车辆力学9 0 9电动汽车(EV),混合动力汽车(HEV),发动机评级 - EV与内燃机内燃烧发动机车辆的比较 - 车辆力学的基本原理。III单元电池建模,类型和充电9 0 9电池和混合动力车辆中的电池 - 电池基础知识 - 电源板参数。类型 - 铅酸电池 - 镍 - 卡德米电池 - 镍金属水合(NI MH)电池 - 锂离子电池 - Li-polymer电池,锌 - 空气电池,钠硫硫磺电池,氯化钠,氯化钠,研究和开发高级电池的开发。电池建模,电路模型。电池组管理,电池充电。第四单元控制预序9 0 9 0 9控制设计初步 - 简介 - 转移功能 - 一阶和二阶系统的Bode图分析 - 稳定性 - 稳定性 - 瞬态性能 - 增强转换器的瞬态性能传递函数 - 增益边距和相位边缘研究 - 开放式循环模式。单元V控制AC机器9 0 9 0 9简介 - 参考框架理论,在各种帧 - 矢量控制 - 直接扭矩控制中的诱导和同步机的基本模型。
2 • 完全可配置的多输出和多相位非隔离式 DC/DC PWM 控制器 • 网络设备 • 控制多达 4 个电压轨和多达 8 个相位 • 电信设备 • 服务器 • 支持高达 2MHz 的开关频率 • 具有 250 ps 占空比分辨率的存储系统 • FPGA、DSP 和内存电源 • 高达 1mV 的闭环分辨率 • 硬件加速的 3 极点/3 零点描述具有非线性增益的补偿器 UCD9248 是一款多轨、多相改进的瞬态性能同步降压数字 PWM 控制器,专为非隔离式 DC/DC 电源应用而设计。此设备 • 支持多个软启动和软停止
• 频率响应 • 伯德增益和相位图 控制系统分析和设计 • 传递函数、框图和信号流图 • 稳定性分析、瞬态性能、稳态误差 • 劳斯稳定性标准 • 根轨迹技术 • PI、PD 和 PID 控制器 • 极点和零点对系统响应的影响、极点-零点抵消 控制系统的频域分析和设计 • 伯德增益和相位图 • 增益和相位裕度、相对稳定裕度、稳健性 • 超前和滞后动态补偿 • 奈奎斯特图和奈奎斯特稳定性标准 矩阵数学 • 矩阵分解(Jordan、Schur、奇异值) • 非负定矩阵和正定矩阵 • 矩阵范数、广义逆 • 矩阵指数
摘要。本文提出了一种基于方位/仰角环跟踪控制器的新型模糊PID控制方案,以提高跟踪实时目标的精度。模糊PID控制器由三个模糊逻辑控制器和一个带模型参考自适应控制的PID控制器组成,其中PID控制器的三个参数的自适应增益由模糊逻辑规则进行微调。所提出的控制算法的隶属函数(MF)与一般算法不同,其中输入和输出的MF彼此不同,例如MF类型,MF数量和显示范围。将所提出的模糊PID控制方法的性能与普通PID控制算法进行了比较。仿真验证了模糊PID控制模型跟踪性能的有效性,该模型具有零超调、良好的瞬态性能和快速收敛跟踪能力。模糊PID跟踪控制算法可以提高系统整体性能,为深入研究基于机载光电稳定平台的控制系统奠定理论基础。关键词:模糊PID,跟踪控制器,优化方案,稳定平台
在本文中,提出了针对异性恋车辆排的分布式模型预测控制(DMPC)算法。允许领先的车辆由非零和时间变化的输入驱动,而不是以恒定的速度行驶。除了每个车辆的个别状态和输入限制外,所有车辆均通过状态耦合的车间间距约束和状态耦合成本函数耦合,从而维持一维排的构造与令人满意的瞬态性能。每辆车都与其附近的车辆通信,并且可能不知道领先的车辆的动力学状态信息。每个车辆的控制输入是由每个车辆的本地信息以及其邻居的假定状态信息确定的局部优化问题计算的。通过设计以下车辆的分布式终端控制法,将每个状态耦合设置为几个特定子集,然后迫使每辆车辆以优化其在分配的子集中受到约束的状态,可以将耦合约束和成本函数解耦,因此可以采用分布式和平行的计算方法来计算所有以下所有车辆的控制权。基于量身定制的终端平等约束以及量身定制的终端控制法,在所有时间步骤中都实现了本地MPC优化问题的递归可行性,并且还可以保证每辆车的渐近稳定性。在模拟中证明了所提出的DMPC方法的有效性,并且所提出的DMPC的优势与领先的车辆的非零,无法访问,并且随时间变化的输入强调了与不断变化的领先车辆速度的异构车辆平台的比较模拟。