摘要。由于长期运行高分辨率模型的高计算成本,因此气候变化的模型投影通常不包括解决方案良好的海洋尺度。这项挑战是使用效率最大化的建模策略来应对的,该策略适用于过去,现在和自由气候的3公里模拟。模型设置利用了降低分辨率的旋转和瞬态模拟,以在短时间内初始化区域性的高分辨率海洋模型。将结果与卫星高度学数据和更传统的涡流仿真进行了比较,并根据其复制观察到的中尺度效果的能力进行了评估,并揭示了对与自然变异性不同的气候变化的反应。高分辨率模拟良好地产生了观察到的南洋涡流能量(EKE)的幅度,但局部大小和EKE的分布仍然存在差异。较粗糙的涡流集合模拟了类似的EKE模式,但主张不足的水平观察到了55%。在变暖的大约1°C时,高分辨率模拟不会导致整体EKE的变化,而与完全合奏在涡流模拟中的EKE同意相比。在变暖的大约4°C下,两个数据集都以相对术语增长了EKE的一致水平,尽管不是绝对幅度,并且EKE变量的增加。模拟的Eke上升集中在已经知道的地区的流动范围
未来的能源结构方案通常意味着可再生能源的大量贡献。太阳能和风能的使用日益增多,而它们本质上是间歇性的,实际上构成了电网的不确定性和脆弱性来源。由于核能在转换成电能之前会产生热量,因此在热量转换步骤之前进行热存储步骤可能有效地弥补这种间歇性,以确保电网的可靠性和灵活性,而不会导致核反应堆功率发生大的变化。根据每日情景,核反应堆甚至可以全天保持最大功率。按照这种方法,较小的反应堆能够应对与没有热存储系统的较大反应堆相同的峰值需求。本文提出了一种与钠快堆耦合的初步热存储架构,以突出这种存储技术的优势。基于两个分别装有热流体和冷流体的罐的技术设计受到当前太阳能技术的启发。该系统的尺寸确定采用热力学循环优化工具 (CYCLOP),初步瞬态模拟采用系统热工水力学代码 CATHARE3。即使仍需要进行一些架构改进,尤其是出于安全原因,本研究仍能得出这种发电策略的主要优点。特别是,结果表明,在负荷跟踪条件下,在以基本负荷运行反应堆时,可以实现可变的电力生产,从而能够优化工厂的盈利能力。由于在温度变化方面对一次回路的影响可以忽略不计,因此容器中的热机械负荷约束也可以大大放宽。
摘要:近零能耗建筑在全球范围内不断增加,利用低碳技术进行供暖和电力自产。商业建筑越来越多地被视为安装智能微电网的候选对象,这些建筑可能受益于白天停放在充电场的员工电动汽车电池的额外存储容量。巧妙地利用这些电力源和电力吸收器的相互作用可能对解决当今快速变化的能源结构中复杂的电网需求模式至关重要。通过 TRNSYS 环境中的瞬态模拟,研究了高效办公楼能源系统与大型屋顶光伏装置以及连接在建筑充电场的 40 辆电动汽车的总存储容量之间的相互作用。根据希腊网络的各自需求曲线,按月、按季和按小时分析了 18 个区域建筑的供暖、通风和空调系统、汽车电池和光伏系统的相互作用。结果表明,特定系统的规模可以有利地支持智能微电网的运行。这座建筑的年总用电量估计达到 112,000 千瓦时,即 20 千瓦时/平方米。40 辆电动汽车的年用电量为 101,000 千瓦时,30% 的光伏发电量即可完全满足。因此,该建筑成为电网的净电力输出者,每天的最大输出电量发生在 12:00 至 14:00 之间,这有利于满足需求曲线。因此,在商业建筑中建立智能微电网,屋顶光伏板容量大,员工车队中有相当数量的电动汽车,在这方面非常有效。
技术计算机辅助设计用于模拟半导体工艺和器件,这个领域已变得日益复杂和异构。如今,集成电路的加工需要超过 400 个工艺步骤,而最终的器件往往具有复杂的 3D 结构并包含各种材料。只有考虑从原子(界面、缺陷等)到纳米(量子限制、非体积特性等)到完整芯片尺寸(应变、热传输等)的所有长度尺度,以及从飞秒到秒的时间尺度的影响,才能理解完整的器件行为。电压、电流和电荷已缩放到如此低的水平,以至于电子噪声、统计效应和工艺变化都有很大的影响。基于新材料(例如 2D 晶体)和物理原理(铁电体、磁性材料、量子比特等)的器件对标准 TCAD 方法提出了挑战。虽然物理学界开发的模拟方法可以描述基本的器件行为,但它们通常缺乏重要的模拟功能,例如瞬态模拟或与其他 TCAD 工具的集成,并且对于日常使用来说速度太慢。由于半导体技术的复杂性,通过在理想条件下观察孤立器件的单个方面来评估工艺或器件结构变化对电路性能的影响变得越来越困难。相反,需要一个能够处理嵌入在芯片环境中的实际器件结构的 TCAD 工具链。TCAD 的所有方面都需要新的方法,以确保基于灵活的模拟模型的高效工具链,从原子效应到电路行为,这些模型可以处理新材料、器件原理和随之而来的大规模模拟。IEEE 电子设备学报的这期特刊将介绍 TCAD 在工艺和器件行为领域的最新发展和最新技术,重点介绍改进工具链的新方法。论文必须是新的、原创的材料,且未受版权保护、未在任何其他档案出版物中出版或接受出版,目前尚未考虑在其他地方出版,并且在《电子设备交易》审议期间不会提交到其他地方。感兴趣的主题包括但不限于: