1. 如果更改外部电路的常数,请考虑到产品和外部组件的特性变化(包括瞬态特性和静态特性),留出足够的余量。 2. 您同意本文件中包含的应用说明、参考设计以及相关数据和信息仅作为产品使用的指南。因此,如果您使用此类信息,则您应对此承担全部责任,并且您必须在使用本文件中包含的此类信息时自行进行独立的验证和判断。对于您或第三方因使用此类信息而遭受的任何损害、费用或损失,ROHM 概不负责。静电预防措施
气体中辐射的吸收和发射本质上是量子力学过程。分子中离散能级的存在是原子尺度系统量子特性的体现。基态是唯一的稳定状态,而任何激发态分子即使不受干扰,一段时间后也会通过跃迁到基态或其他较低状态来降低其内部能量。激发态的一般瞬态特性与状态能量的不确定性有关,如海森堡不确定性关系所示。因此,在两个确定的量子态之间跃迁期间发射的光子的能量也是不确定的,跃迁能量统计分布在与这两个状态相关的中心能量周围。
1.如果外部电路常数发生变化,请考虑产品和外部组件的特性变化(包括瞬态特性和静态特性),留出足够的余量。2.您同意本文件中包含的应用说明、参考设计以及相关数据和信息仅作为产品使用的指南。因此,如果您使用此类信息,则您应对此承担全部责任,并且您必须在使用本文件中包含的此类信息时自行进行独立的验证和判断。对于您或第三方因使用此类信息而遭受的任何损害、费用或损失,ROHM 概不负责。静电预防措施
1. 如果更改外部电路的常数,请考虑到产品和外部组件的特性变化(包括瞬态特性和静态特性),留出足够的余量。 2. 您同意本文件中包含的应用说明、参考设计以及相关数据和信息仅作为产品使用的指南。因此,如果您使用此类信息,则您应对此承担全部责任,并且您必须在使用本文件中包含的此类信息时自行进行独立的验证和判断。对于您或第三方因使用此类信息而遭受的任何损害、费用或损失,ROHM 概不负责。静电预防措施
1. 如果更改外部电路的常数,请考虑到产品和外部组件的特性变化(包括瞬态特性和静态特性),留出足够的余量。 2. 您同意本文件中包含的应用说明、参考设计以及相关数据和信息仅作为产品使用的指南。因此,如果您使用此类信息,则您应对此承担全部责任,并且您必须在使用本文件中包含的此类信息时自行进行独立的验证和判断。对于您或第三方因使用此类信息而遭受的任何损害、费用或损失,ROHM 概不负责。静电预防措施
摘要:加速器驱动次临界系统(ADS)是第四代核能系统的最佳候选之一,它不仅可以生产清洁能源,还可以焚烧核废料。ADS的瞬态特性和运行原理与临界核能系统(CNES)有显著不同。本文利用自主开发的中子学和热工水力学耦合程序ARTAP对ADS的安全特性进行了分析,并与CNES进行了比较。在ADS和CNES中都模拟了三种典型事故,包括反应性插入、流量损失和热沉损失。比较结果表明,在反应性插入事故中,CNES反应堆的功率以及燃料、包壳和冷却剂的温度均远高于ADS反应堆,这意味着ADS比CNES具有更好的安全优势。但由于ADS堆芯处于亚临界状态,对负反应性反馈的敏感性较低,模拟结果表明失流事故下CNES的固有安全特性优于ADS,事故发生后ADS的保护系统能迅速启动,实现紧急停堆;对于热沉损失事故,研究发现ADS和CNES反应堆包壳的峰值温度均低于安全极限,这意味着这两座反应堆在失流事故中具有良好的安全性能。