摘要 – 高能带电等离子体粒子对空间技术构成威胁。带电粒子在航天器主体上的积累会产生放电。静电放电是强大的电磁干扰源,会对各个部件和整个系统的运行产生不利影响。据统计,大约 30% 的卫星损失是放电的结果。在航天器运行之前,需要计算电流的扩散,这需要大量的机器和时间成本。本文提出了一些新颖的方法,用于快速构建由于带电而导致的航天器表面电流扩散的图像。第一种方法的关键点是构建一个用于计算流量扩散的有限区域。瞬态电流的计算将仅在用户指定的电磁兼容区域内进行,而不会影响其余部分。本文还基于欧拉方法开发了新的简化微分方程组计算方案。借助新的计算方案,计算用户指定的局部区域中的未知量的时间与计算未知的全模型相比减少了几个数量级。本文对新的计算方案进行了总结,指出了其构造的复杂性。通过实例验证了新计算方案的充分性和准确性。
近年来,晶体管技术的进步使得人们能够设计出越来越复杂的集成电路。随着在降低功耗和提高性能方面取得的巨大成就,在考虑深度扩展技术时也面临着新的挑战。明显的工艺变异性、老化和辐射效应是经常出现的设计挑战,其重要性也日益增加 [1-5]。集成电路越来越容易受到单个高能粒子撞击的影响,可能会产生破坏性或非破坏性的影响。当粒子撞击触发 CMOS 电路中固有的 PNPN 结构中的寄生晶体管时,就会发生单粒子闩锁 (SEL),这可能会产生破坏性影响 [6]。当高能粒子从顺序逻辑元件撞击晶体管的敏感区域并沉积足够的电荷以扰乱电路时,单粒子翻转 (SEU) 会以位翻转的形式出现。此外,组合逻辑电路容易受到单粒子瞬态 (SET) 效应的影响,这种效应表现为粒子与处于关断状态的晶体管漏极电极相互作用产生的寄生瞬态电流。这并不是单粒子效应 (SEE) 的详尽列表 [7]。辐射加固设计 (RHBD) 技术已经开发出来,用于应对不同辐射条件下电子电路的辐射效应
1 Precision制造中心,DMEM,Strathclyde大学,格拉斯哥,英国w.xie@strath.ac.uk摘要摘要实现了对氧化增长的精确控制已成为局部阳极氧化(LAO)纳米术的质量控制的关键瓶颈,这是由于缺乏有效的流程监测和反馈控制方法而导致的纳米术。在这种情况下,本文提出并提出了一种现场检测方法,使用高度耐用的导电钻石涂层探针在老挝过程中实时监测氧化生长的状态。研究结果表明,使用钻石涂层的探针可以在微型水平上诱导具有瞬态电流的可控老挝,并创建高度超过18 nm的纳米结构,这尤其优于使用掺杂的硅探针获得的纳米结构。还证明,在一定的电压范围内,检测到的电流可以反映纳米碱制造过程中氧化的生长,检测到的电流与氧化表面的电导率相关,表明氧化程度。可以预期,与柔性脉冲调制的组合将有助于一种柔性,简单的方法来调整氧化生长,为生产高质量的氧化物线铺平道路。原子力显微镜,监测,纳米制造,氧化
三元粉红元已经成为超薄光伏的潜在候选物,而NABIS 2纳米晶体(NC)由于空气中长达数月的相位稳定性,高吸收系数> 10 5 cm-1,以及PSEUDO-DIEMEDO-DICEUDO-DICEUDO-DERCOUDO-DECLACEUDO-DECHUDO-DECLECTAL-1.4 EV。然而,先前对NABIS 2 NC的研究使用了在合成过程中分离单个NC的长链有机配体,这严重限制了宏观电荷 - 载流子运输。在这项工作中,这些长链配体用于简短的基于碘化物的配体,从而可以理解NABIS 2的宏观电荷载体运输特性,并在更深入的情况下评估其光伏电位。发现配体交换会导致NC内(微观)和NC(宏观)迁移率同时改善,而电荷载体定位仍在进行,这对可实现的运输长度产生了基本限制。尽管有这种限制,但高吸收系数使超薄(55 nm厚)的太阳能吸收剂可用于光伏设备,这些设备具有峰值外部量子效果> 50%。此外,与温度依赖性的瞬态电流测量结果发现了一个用于离子迁移的88 MeV的小活化能屏障,这说明了Nabis 2光伏设备的强烈滞后行为。这项工作不仅揭示了NABIS 2 NC在几个长度上的电荷运输特性如何受到配体工程的影响,而且还如何揭示该材料中易于离子的传输,从而限制了光伏中NABIS 2的潜力。另一方面,发现表明,有机会在需要离子传导的备忘录,电解质和其他应用中使用这种材料。