IFM 接收器的工作原理 当前的 IFM 接收器技术对 RF 频率、RF 幅度和 RF SNR 进行采样;随后的数字处理提取峰值 RF 幅度、与峰值 RF 测量时间同步的 RF 输入频率、TOA 和 RF 包络脉冲宽度。测量结果通过每个时钟周期估算的最小可接受 RF SNR 进行限定。这使接收器能够自动调整以适应输入 SNR 的变化,而无需积分噪声附加阈值。IFM 接收器数字处理和串行 PDW 生成使其成为处理超外差接收器 IF 输出的理想设备。在许多 ELINT 系统中,采用两个 IFM 接收器和一个超外差接收器的并行组合。一个 IFM 接收器提供 2-18GHz 的瞬时单频带覆盖,而超外差接收器使用第二个 IFM 接收器进行 IF 处理,提供对选定信号的高灵敏度精确分析。这种组合同时提供了高截获概率 (HPI) 能力和详细分析能力。IFM 接收器最显著的操作优势也是其最大的缺点:虽然它准确地处理瞬时观察到的最大 RF 输入信号,但它忽略了同时存在的较小功率的 RF 输入。在 IFM 接收器的早期开发中,同时出现低于 20dB 的信号并不罕见
MZI-001是基于自由空间光学器件的纤维纤维紧凑型Mach-Zehnder干涉仪,用于检测光学频率的变化。该设备配备了两个快速光电电视器,用于平衡检测干涉仪的两个互补输出。设备的自由光谱范围(FSR)或零交叉间距被准确地定义为2%以内,这比全纤维方法具有明显的优势。此外,订购时可以从10 GHz到100 GHz的高度选择FSR,从而使其灵活地进行系统集成。最后,MZI-001的自由空间光学设计消除了通常与全纤维干涉仪相关的极化灵敏度。MZI-001非常适合在波长扫描的光源中应用,以确定其瞬时频率,OCT系统作为用于系统触发的频率时钟,用于检测传感信号光谱漂移的光纤传感器,以及用于检测激光器频率漂移的相干通信系统中。
摘要:本文提出了一种新型的监督学习方法——统计自适应傅里叶分解(SAFD)。SAFD 使用正交有理系统或 Takenaka-Malmquist(TM)系统为训练集建立学习模型,在此基础上可以对未知数据进行预测。该方法侧重于信号或时间序列的分类。AFD 是一种新开发的信号分析方法,它可以自适应地将不同的信号分解为不同的 TM 系统,引入了傅里叶类型但非线性和非负的时频表示。SAFD 将学习过程与 AFD 的适应性特征充分结合起来,其中少量的学习原子足以捕获信号的结构和特征以进行分类。SAFD 有三个优点。首先,在学习过程中会自动检测和提取特征。其次,所有参数都由算法自动选择。最后,将学习到的特征以数学形式表示出来,并可以根据感应瞬时频率进一步研究特征。通过心电图 (ECG) 信号分类验证了所提方法的有效性。实验表明,该方法比其他基于特征的学习方法效果更好。
摘要 --- 自动化生物电信号分析在智慧医疗中有着重要的应用。在本文中,我们专注于心电信号,并提出一种心律失常疾病分类的新方法。我们设计了一种新颖的分析框架,从心电信号中提取不同的特征变换。并且我们训练了多特征的 ANN 模型以获得预测。最后,我们在 MIT-BIH 心律失常的公共数据库上测试了我们的方法。数据库上的实验结果表明我们的模型比其他方法具有更好的分类性能。关键词 --- 心电信号、心电去噪、希尔伯特变换、同步检测、固有模态函数、瞬时频率、本振。介绍心电图 (ECG) 作为心脏活动记录提供了有关心脏状态的重要信息 [1]。心电图心律失常检测对于心脏病患者的早期诊断是必要的。一方面,医生很难在有限的时间内分析记录时间较长的心电图 [1]。另一方面,如果没有工具的支持,人们也几乎无法识别心电信号的形态变化,因此需要一个有效的计算机辅助诊断系统来解决这一问题。大多数心电图分类方法主要基于一维心电图数据,这些方法通常需要提取波形特征、相邻波的间隔以及每个波的幅度和周期作为输入,它们之间的主要区别在于分类器的选择[2,3]。
孤岛运行是微电网 (MG) 的主要特征之一,它是在分布式能源 (DER) 存在的情况下实现的。然而,为了应对 MG 在孤岛运行期间面临的控制挑战,特别是当转换与某些过载相关时,需要一种有效的控制策略。本文介绍了一种中央管理代理 (CMA),它通过控制储能系统 (ESS) 和中央同步发电机 (CSG),在 MG 孤岛后保持其稳定性。此外,本文提出了一种新的自适应负载削减/恢复方案,该方案根据频率测量结合频率梯度的平均值来计算功率不平衡量。与现有方案(如基于瞬时频率梯度的负载削减方案)相比,所提出的方案的优势在于其对频率振荡的鲁棒性。此外,所提出的方法与 DER 的控制程序和光伏电站的间歇性兼容。本文的另一个突出特点是开发了一个用于实时仿真的硬件在环 (HIL) 测试平台,在此平台上评估了所提出的方案以及与 CMA 以及其他组件的相关通信。所得结果表明,该控制策略可以自信地保持孤岛模式下 MG 的稳定性,并实现与电网连接模式的平稳重新连接。