要仔细理解这些论点,我们首先需要理解一个依赖于观察者的思想实验。2012 年,Almheiri、Marlot、Polchinski 和 Sully (AMPS) 提出了一个思想实验,描述了观察者进入黑洞时会经历什么。回想一下量子场论中的事实,QFT 真空具有大量的短程纠缠。这意味着当观察者接近事件视界并且看到霍金光子从视界出现时,事件视界内就会有一个纠缠光子。可以将其想象为视界周围的一堆贝尔对。现在,如果观察者在穿过视界时没有看到这些贝尔对,他们就看不到平滑的时空,而是看到一堵普朗克能量光子墙,这堵光子墙会瞬间将它们瓦解 [9]。这就是所谓的防火墙。
自成立以来,量子力学在预测实验的结果方面取得了巨大成功。,但该理论假设粒子的某些特性本质上是不确定的,这困扰了包括阿尔伯特·爱因斯坦在内的许多物理学家。他和他的同事在1935年描述的悖论中表达了他们的关注[1]:想象一下创建两个量子机械纠缠的粒子,并在两个分离的研究人员之间分发它们,后来命名为爱丽丝和鲍勃。如果爱丽丝测量了自己的粒子,那么她就会学到一些有关鲍勃粒子的信息,就像她的测量瞬间改变了他粒子状态的不确定性一样。为避免这种“距离怪异的动作”,爱因斯坦提出,位于量子框架下方是一组经典的“隐藏变量”,这些变量确切地确定了粒子的行为方式,而不是仅提供概率。
图 11 所示的电路描绘了三相逆变器的一条支路;图 12 和 13 显示了 Q1 和 D2 之间电流换向的简化图示。电源电路中从芯片粘合到 PCB 轨道的寄生电感被集中到每个 IGBT 的 LC 和 LE 中。当高端开关打开时,V S1 低于 DC+ 电压,其电压降与电源开关和电路的寄生元件有关。当高端电源开关关闭时,由于连接到 V S1 的电感负载(这些图中未显示负载),负载电流会瞬间流入低端续流二极管。该电流从 DC 总线(连接到 HVIC 的 COM 引脚)流向负载,并在 V S1 和 DC 总线之间产生负电压(即,HVIC 的 COM 引脚的电位高于 VS 引脚)。
本调查提供了基于多项式理论的一系列技术的阐述,共同称为多项式方法,这些方法最近已应用于成功解决统计推断中的几个具有挑战性的问题。主题包括多项式近似,多项式插值和多数化,力矩空间和正值多项式,正交多项式和高siAN正交正交正交正交,其主要概率和统计应用在大型域和学习混合模型上的性质估计中。这些技术不仅为具有可证明最佳性的高度实用算法的设计提供了有用的工具,而且还用于通过瞬间匹配的方法来建立推理问题的基本限制。在诸如熵和支撑大小估计,不同的元素问题和学习高斯混合模型等具体问题中证明了多名方法的效果。
PC 或穿甲炸弹主要用于打击舰船和防御工事。它们的引信具有短暂的穿透延迟。PC 炸弹略呈流线型,配有重型软管和厚壁。壁厚朝炸弹底部减小。它们由铸钢制成,头部经过特殊硬化处理。PC 炸弹的装载系数约为 20%,并装有 TNT 蜡混合物。PQ 炸弹可通过尾锥上的深蓝色油漆进行识别。PC 炸弹曾被用作 SD 的破片炸弹,并瞬间引信;如果是这样,深蓝色可能会涂上红色。PD 更是专门用于穿甲。炸弹更薄、更长、弹壳更厚、装载系数更低。BT。BT(炸弹鱼雷)在战争的最后 2 个月投入生产,
我们在认知任务上的表现波动:完成相同任务的同一个人的响应瞬间会有所不同。数十年来,认知波动被隐式忽略 - 被视为测量误差 - 而重点放在诸如平均表现之类的聚集体上。利用密集的试验数据和新颖的时间序列方法,我们探讨了可变性作为本质上重要的表型。在11个具有超过700万个试验的认知任务中,我们发现我们检查的每个任务中的认知变异性差异高度可靠。这些差异在定性和定量上都与平均表现不同。此外,我们发现跨任务变异性的单个维度不足,证明先前假定的认知变异性的全局机制至少部分不完整。我们的发现表明可变性是认知的基本组成部分 - 有可能提供对发展过程的新见解。
摘要:固体剂型形式的颗粒(例如机械,固体和分子间和固体剂型的生物利用度)在体内瓦解中均可脱落,然后溶解。本评论专注于分解代理,其类别,行动机制,相关的利弊。此外,更多的重点放在天然超级动物上,它们以最快的速率进行分解,副作用有限。因此,它们经常用于创建数量的制剂,例如快速溶解片剂,脉冲和片剂可分散片剂等。尽管有各种崩解剂,但它们与它们共同加工形式进行了彻底研究,以及新型生产技术,例如熔体挤出,结晶,喷雾干燥,溶剂蒸发,颗粒/团聚。关键字:分解超瞬间分散剂,熔体挤出,结晶,喷雾干燥,溶剂蒸发,颗粒/团聚 div div>
我希望有几个原因。与Whiting工程学院合作,我们刚刚获得了三个彭博社杰出教授的集群。这对部门来说是难以想象的进步。这些教授职位为我们提供了非凡的资源来雇用人工智能领导者(AI),重点是将AI应用于数字病理学(尽管集群没有特定的美元金额,但我们估计它是数以千万万美元的投资)。这是一个改变游戏的进步,在瞬间,我们将成为这个新兴领域的世界领导者。同时,我们仍然是NIH资金中排名最高的病理部门之一,正如我们网页的“最新出版物”部分所强调的那样(感谢芭芭拉·迪特里克(Barbara Detrick)的最新消息),我们的教职员工继续产生令人兴奋和有影响力的科学。
全球行业转型从来都不是瞬间发生的。每次“革命性转变”在引入支持基础和广泛采用之间都会有一个滞后期。以蒸汽机为例。罗马建筑师维特鲁威早在公元前 15 年就提到了一种基本的蒸汽动力装置。那么,为什么广泛采用需要 1,800 多年的时间?答案很简单:直到突破性的发动机技术以及煤炭供应链的基础设施使蒸汽变得实用和具有成本效益之前,蒸汽既不实用也不具有成本效益。这个转折点基本上消除了学习曲线,使“行动曲线”变得更加陡峭。领先者已经完成了学习。直到 18 世纪末,在短短 20 年的时间里,蒸汽机在工业中的应用率才从几乎为零增加到近 80%。
摘要我们为自动驾驶的实时可行的基于组合编程的决策(MIP-DM)系统开发。使用线性车辆模型在公路对准的坐标框架中,车道变化限制,避免碰撞和运行规则可以作为混合成分不平等的配方,从而导致混合构成二次统一程序(MIQP)。提出的MIP-DM通过在每个采样瞬间求解MIQP来执行操纵选择和轨迹产生。过去认为实时求解MIQP是棘手的,但我们表明我们最近开发的求解器BB-ASIPM能够实时解决嵌入式硬件的MIP-DM问题。在各种情况下,在仿真中说明了这种方法的性能,包括合并点和交叉点,以及在dspace scalexio和microautobox-iii中的硬件式仿真。最后,我们显示了使用小型车辆的实验。