移动通信、无线数据传输和即时访问技术日益普及,需要更快的数据速率和更多的数据通道来支持越来越多的用户及其设备。为了满足这些需求,电路必须做得更小,性能也比以往更快。制造商实现这一目标的一种方法是利用具有良好介电性能(复介电常数)的材料来制造这些电路(例如 FR 4 和 RF Duroid 等)。另一种方法是在更高的频率范围内设计这些组件和设备,以便提供更多带宽来更有效地传输数据。然而,虽然制造商引用了现有材料在低频下的良好介电常数,但这些相同的解决方案可能不适合设计高频 RF 和微波应用。
本文提出了一个用于生成布局设计的图像矢量双扩散模型。与先前的努力不同,主要忽略了元素和整个画布的视觉信息,我们的方法将预先训练的大图扩散模型的力量集成了通过增强的明显区域的理解和高级元素间关系推理来指导矢量扩散模型中的布局组成。我们提出的模型同时在两个域中运行:它在图像do-main中的总体设计外观进行了优化,同时优化了向量域中每个demign元素的大小和位置。所提出的方法在几个数据集上实现了最新结果,并启用了新的布局设计应用程序。项目网页:https://aminshabani.github.io/Visual Layout Composer。
最先进的神经检索者主要关注英语等高源语言,这阻碍了他们在涉及其他语言的检索中采用。当前通过杠杆化的多语言审计语言模式,可以证明缺乏非英语语言的高质量标记数据。但是,这些模型需要多种语言的大量特定于任务特定的微调,通常在训练阶段的语料库中以最少的反映语言表现较差,以在培训阶段之后结合新语言。在这项工作中,我们提出了一个新颖的模块化检索模型,该模型从单个高资源语言的丰富数据中学习,并有效地转移到各种语言,从而消除了对语言特定标记的数据的需求。我们的模型Colbert-XM展示了与现有的最新的多语言检索器相对的性能,这些猎犬在更广泛的数据集中以各种语言进行了培训。进一步的分析表明,我们的模块化方法具有高度的数据效率,有效地适应了分布数据,并大大减少了能耗和碳排放。通过证明其在零拍摄的Sce-Narios中的熟练程度,Colbert-XM标志着向更可持续和包容的检索系统的转变,从而使有效的信息可以使用多种语言获得。我们将公开发布社区的代码和模型。
DNA需要进入细胞内,然后进入细胞核内。DNA需要首先转录到mRNA中,然后翻译成蛋白质抗原,以引起细胞和体液免疫反应。DNA需要越过两个膜可能需要专门的技术才能进入核(即:电穿孔)。
摘要近年来对结构化标量涡流束的光学手性和自旋角动量进行了深入研究。这些梁的伪内拓扑电荷ℓ造成其独特特性的原因。是由带有拓扑电荷的标量涡流梁的叠加构建的,圆柱矢量涡流梁是具有空间上不均匀极化分布的高阶庞加尔模式。在这里,我们强调了这些高阶结构梁在偏尾(弱焦点)和非顺式(紧密的聚焦)条件下的光自旋和手性密度的高度可调节和异国情调的空间分布。我们的分析理论可以在任何高阶或杂种庞加莱球体上产生每个点的自旋角动量和光学手性。表明,可调的pancharatnam拓扑电荷ℓp =(ℓa +ℓb) / 2和偏振指数m =(vector涡流梁的vortex beam的ℓb - ℓa) / 2在自定义其旋转和chir式空间分布方面起着决定性的作用。我们还提供了正确的分析方程式,以描述集中的非顺式标量贝塞尔束。
摘要。相位模型(例如Allen-CaHn方程)可能会引起几何形状的形成和演变,这种现象可以在适当的缩放方案中进行严格分析。在其尖锐的界限限制下,已经猜想了具有n 3不同最小值的电势的矢量allen-cahn方程,以通过多相平均曲率流量来描述分支接口的演变。在目前的工作中,我们在两个和三个环境维度和适当的一类潜在的情况下给出了严格的证据:只要存在多态度平均曲率流的强大解决方案,就可以解决矢量allen-cahn方程,并具有良好的初始数据汇总到多型固定固定构型固定端口的限制范围内的范围范围范围的弯曲范围范围范围的范围,我们甚至建立了收敛速度。”1 = 2 /。我们的方法基于Allen-Cahn方程的梯度流结构及其限制运动:基于用于多相平均曲率流的最新概念“梯度流校准”的概念,我们引入了矢量allen – Cahn方程的相对熵的概念。这使我们能够克服其他方法的局限性,例如避免需要对艾伦 - 卡纳操作员进行稳定性分析,或在积极时为能量的其他收敛假设。
图表列表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。四
I. 引言 无线电测向仪 (RDF) 的目的是估计电磁 (EM) 源辐射的入射波的到达方向 (DoA)。RDF 可用于国防以及民用应用,如射电天文学、导航系统和救援设备 [1]。为了估计传入 EM 场的 DoA,通常使用由传感器天线的空间分布 [2] 或传感器的极化分集 [3] 产生的空间相位分集。也有人提出将这两种众所周知的方法结合起来,以提高 DoA 估计的准确性 [4]–[10]。基于空间分集的 DoA 估计包括使用单极化分布式元件阵列测量传入的 EM 场,而极化分集的使用则基于使用由六个天线组成的矢量传感器(例如三个正交电偶极子和三个正交磁偶极子)测量 EM 场分量 [11]。然而,根据 [10]、[12]–[18],仅测量三个 EM 场分量似乎足以精确估计
RISC-V矢量加密扩展(ZVK)在2023年批准并集成到2024年的ISA主要手册中。这些表面支持在矢量寄存器文件上运行的高速对称加密(AES,SHA2,SM3,SM4),并且由于数据并行性而对标量密码扩展(ZK)提供了显着的性能改进。作为批准的扩展名,ZVK由编译器工具链提供支持,并且已经集成到流行的加密中间件(例如OpenSSL)中。我们报告了玛丽安(Marian),这是带有ZVK扩展程序的向量处理器的第一个开源硬件实现。设计基于纸浆“ ARA”矢量单元,该矢量单位本身就是流行的CVA6处理器的扩展。该实现位于SystemVerilog中,并已使用Virtex Ultrascale+ FPGA原型制作进行了测试,其计划的磁带针对22nm的过程节点。我们对矢量密码学对处理器的架构要求进行分析,以及对我们实施的绩效和面积的初步估计。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作