高清(HD)地图对于自动驾驶系统的安全至关重要。虽然现有技术启用了相机图像和板载传感器以生成对高精度地图的审核,但它们受到对单帧输入的依赖的限制。这种方法限制了它们在诸如OCClusions之类的复杂情况下的稳定性和性能,这主要是由于缺乏时间信息。此外,当应用于更广泛的感知范围时,它们的性能会降低。在本文中,我们介绍了流媒体,这是一种新颖的在线映射管道,擅长于视频的长期时间建模。流媒体网络采用了多点的关注和时间信息,可以使大型本地高清图的构建具有高稳定性,并进一步解决了现有方法的限制。此外,我们严重地使用了广泛使用的在线HD MAP构造基准和数据集,Argoverse2和Nuscenes,在现有评估协议中揭示了显着的偏见。我们根据地理跨度来启动基准,从而促进公平而精确的评估。实验结果验证了流媒体网络在所有设置中都显着超过现有方法,同时保持在线推断速度为14。2 fps。我们的代码可在https://github.com/yuantianyuan01/ streammapnet上使用。
摘要 - 依赖性量化(DQ)是多功能视频编码(VVC)标准中的关键编码工具之一。dq采用两个标量量化器,每个标量量化器的选择受奇偶元驱动的四州状态机的控制。由于设计是规范上执行的,因此DQ的使用需要汇率优化的量化(RDOQ),并具有每个系数决策和状态更新,例如基于网格的量化,最初针对VVC参考软件(VTM)提出。由于其固有的依赖性(包括基于先前编码的系数值的VVCS上下文选择)以及相当广泛的搜索范围,因此Trellis量化在计算上是高度复杂的。降低该算法的复杂性对于实用的VVC编码器至关重要。在本文中,我们提出了一个快速依赖的量化格子搜索,通过以下方式改进了初始设计:不可能的分支的格子修剪,正向自适应上下文传播,最后是矢量化的实现。在开放和优化的VVEND编码器中提出的建议方法将量化运行时减少了37%,允许在中等预设中总体15%的编码器加速,而在全intra编码条件下对压缩性能没有影响。在随机访问条件下,实现了9%的整体编码器加速。索引项 - VVC,VVEN,量化,格子,矢量。
高清地图(HD-MAP)的至关重要目的是为地图元素提供厘米级别的位置信息,并在自主驾驶中的各种应用中扮演着关键的角色,包括本地化[6,23,32,33,35,38]和Navigation [1,2,11]。传统上,HD-MAP的构建是通过基于SLAM的方法[30,40]离线进行的,这既是耗时又是劳动力密集的。最近的研究努力已转向使用船上的预定范围内的本地地图的建造。尽管许多现有的作品框架构造作为语义序列任务[17,24,27,29,41],但这种方法中的栅格化表示表现出冗余的信息,缺乏地图元素之间的结构关系,并且通常需要广泛的后处理工作[17]。响应这些局限性,MAPTR [19]采用了一种端到端的方法来构建vecter ver的地图,类似于Detr范式[4,5,21,42]。
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年11月5日。 https://doi.org/10.1101/2023.11.03.565534 doi:Biorxiv Preprint
紧凑的量子数据表示对于数据分析的量子算法这一新兴领域至关重要。我们引入了两种新的数据编码方案 QCrank 和 QBArt,它们通过均匀控制的旋转门具有高度的量子并行性。QCrank 将一系列实值数据编码为数据量子位的旋转,从而实现高存储密度。QBArt 直接将数据的二进制表示嵌入计算基础中,需要更少的量子测量,并有助于对二进制数据进行易于理解的算术运算。我们介绍了针对不同类型数据的几种拟议编码应用。我们展示了用于 DNA 模式匹配、汉明重量计算、复值共轭和检索 O(400)位图像的量子算法,所有算法都在 Quantinuum QPU 上执行。最后,我们使用各种可云访问的 QPU(包括 IBMQ 和 IonQ)来执行其他基准测试实验。
双光子荧光显微镜 (2PM) 的最新进展使得活体小鼠的血管网络大规模成像和分析成为可能。然而,提取密集毛细血管床的网络图和矢量表示仍然是许多应用中的瓶颈。血管矢量化在算法上很困难,因为血管具有多种形状和大小,样本通常光照不均匀,并且需要较大的图像体积才能获得良好的统计能力。最先进的三维血管矢量化方法通常需要分割(二值)图像,依赖于手动或监督机器注释。因此,逐体素图像分割会受到人类注释者或训练者的偏见。此外,分割图像通常需要在骨架化或矢量化之前进行补救形态学过滤。为了解决这些限制,我们提出了一种矢量化方法,可从未分割图像中直接提取血管对象,而无需机器学习或训练。 MATLAB 中的无分割自动化血管矢量化 (SLAVV) 源代码已在 GitHub 上公开提供。这种新方法使用简单的血管解剖模型、高效的线性滤波和矢量提取算法来消除图像分割要求,用手动或自动矢量分类取而代之。半自动化 SLAVV 在小鼠皮层微血管网络(毛细血管、小动脉和小静脉)的三个体内 2PM 图像体积上进行了演示。矢量化性能已被证明对于血浆或内皮标记对比度的选择具有稳健性,并且处理成本与输入图像体积成比例。全自动 SLAVV 性能在不同质量的模拟 2PM 图像上进行评估,所有图像均基于大(1.4 × 0.9 × 0.6 mm 3 和 1.6 × 10 8 体素)输入图像。从自动矢量化图像计算出的感兴趣的血管统计数据(例如体积分数、表面积密度)比从强度阈值图像计算出的统计数据具有更高的图像质量稳定性。
摘要:癌症仍然是一个复杂的医学挑战,也是全球主要的死亡原因之一。纳米药物已被提议作为应对这些复杂疾病的创新平台,其中几种治疗策略的结合可能会提高治疗成功率。在这些纳米药物中,纳米粒子介导的核酸递送已被提出作为调节基因表达的关键工具,无论是靶向基因沉默、干扰 RNA 机制还是基因编辑。这些新型递送系统强烈依赖于纳米粒子,特别是金纳米粒子 (AuNPs) 为有效的递送系统铺平了道路,因为可以微调它们的尺寸、形状和表面特性,再加上易于用不同的生物分子进行功能化。在此,我们将讨论调节致癌基因和肿瘤抑制基因表达的不同分子工具,并讨论 AuNP 功能化在体外和体内模型中用于核酸递送的最新进展。此外,我们将重点介绍这些基于球形 AuNP 的结合物在基因传递方面的临床应用、当前的挑战以及纳米医学的未来前景。
机构:如果没有 Nick Montfort 和 Lillian-Yvonne Bertram 的指导,这篇论文就不可能完成。我非常感谢他们的指导,并不断受到他们创造性和学术工作的启发。感谢 Nick 指导这篇论文,并聘请我担任研究和教学助理,我身边的人已经开始称之为计算文学的“上蜡,下蜡”。在过去的两年里,我学到的东西比我想象的要多,也比我所知道的要多。Trope Tank 的亮点包括:学习在 ZX Spectrum 上编写 BASIC 程序并将其保存到磁带上,学习如何正确使用录音机,我有幸见证的一些最书呆子的说唱比赛,以及精彩的计算机生成的印刷书籍集合。我非常感谢 Allison Parrish、Ross Goodwin 和 David Jhave Johnston 回答了我所有的问题,允许我发表我们的对话,并以多种方式激励我。