横田的友谊节是为了庆祝美国和日本之间的持久伙伴关系,也是加强基地与当地社区联系的机会。今年,该节日计划举办飞机静态展示、现场音乐、食品摊贩和各种表演,以展示横田的使命并加强与东道国之间的宝贵纽带。
■ 简介 - 用起重机摄像机拍摄的图像 - 起重机摄像机安装在吊臂顶部并俯视地面,因此监视器上显示的人像非常小。如果操作员专注于驾驶,他们可能会忽视这一点,这是一个风险。为了充分发挥起重机摄像机的作用,我们利用基于人工智能的图像识别技术,识别起重机摄像机(监视器)上捕捉到的人和物体,并发出警报(监视器上的画面、警告音等)。开发了一种系统来检测
入侵检测系统(IDSS)是必不可少的网络安全组合。以前的网络攻击检测方法更多地依赖于签名和规则来检测网络攻击,尽管过去十年来范式发生了变化,机器学习(ML)实现了更有效,更灵活的统计方法。,ML目前无法将网络安全信息集成到其内部运作中。本文介绍了网络知情性,这是一个新的指标,考虑到网络安全信息,以更明智地表示绩效,受到遇到的攻击的严重性的影响。该指标在网络安全方面使用了事实:共同的漏洞评分系统(CVSS)。在两个公共数据集上的结果表明,这种新的度量标准验证了使用通用指标获得的结果。此外,这种新的度量强调了基于ML的IDSS,优先考虑了严重攻击的高度绩效,这对通用指标看不到。因此,这个新的指标通过弥合ML和网络安全之间的差距很好地完成了通用指标。
近 年 来 , 预 训 练 语 言 模 型 已 逐 渐 成 为 自 然 语 言 处 理 领 域 的 基 座 模 型 。 相 关 实 验 现 象 表 明 , 预 训 练 语 言 模 型 能 够 自 发 地 从 预 训 练 语 料 中 学 到 一 定 的 语 言 学 知 识 、 世 界 知 识 和 常 识 知 识 , 从 而 在 知 识 密 集 型 任 务 上 获 得 出 色 的 表 现 ( AlKhamissi et al., 2022 ; Safavi and Koutra, 2021 ; Petroni et al., 2019 ) 。 然 而 , 预 训 练 语 言 模 型 中 的 知 识 隐 式 地 存 储 在 参 数 之中 , 难 以 显 式 地 对 预 训 练 语 言 模 型 中 的 知 识 进 行 分 析 和 利 用 。 同 时 , 预 训 练 语 言 模 型在 知 识 和 推 理 上 的 表 现 并 不 可 靠 , 常常 会 出 现 “ 幻 觉 ” 现 象 ( Ji et al., 2022 ) , 给 出 与 知 识 冲 突 的 预 测 结 果 。 这 些 因 素 阻 碍 了 预 训 练 语 言 模 型 提 供 可 靠 的 知 识 服 务 。 因 此 , 探 究 模 型 掌握 知 识 的 机 理 、 研 究 如 何 提 取 和 补 充 语 言 模 型 中 的 知 识 成 为 近 期 的 研 究 热点 。 本 次 讲 习 班 主 要 内 容 包 括 预 训 练 语 言 模 型 中 的 知 识 分 析 、 预 训 练 语 言 模 型 的 知 识 萃 取 、 知 识 增 强 的 预 训 练 语 言 模 型 三个 部 分 , 听 众 将 在 本 次 讲 习 班 中了 解 到 近 期 研 究 中 对 预 训 练 语 言 模 型 掌握 知 识 情 况 的 认识 、 从 预 训 练 语 言 模 型 中 提 取 符 号 知 识 的 实 现 方 案 、 利 用 外 部 知 识 增 强 模 型 弥 补 缺 陷 的 各 类 方 法 。
为了处理现实世界中的噪声数据和不完整信息,我们将机器学习的通用性和抗噪性与知识表示和符号推理的严谨性和可重用性相结合,构建能够灵活应对未知情况的强大人工智能。我们还旨在将AI应用到以前从未应用过的领域,例如估计COVID-19的基因网络,预测辐射下的细胞动态以及基于媒体数据分析行为。
摘要:已有多项旨在评估智力生产力和专门设计的任务的研究。然而,结果可能无法反映实际的智力生产力,因为设计的任务与办公室工作不同。同时,办公室工作人员有两种心理状态(工作和暂时休息状态),它们在脑力工作过程中交替变化。如果能检测到员工的心理状态,就能更准确地衡量生产力。在本研究中,作者旨在通过测量脑力工作时的生理指标(如脑电图、心电图和眼外肌和眼轮匝肌的肌电图)来开发一种检测暂时休息状态的方法。从这些测量指标中,作者提取了 6 个特征,即脑电波和脑电波、心率的低频和高频波以及眨眼和扫视眼球运动的间隔。它们被用来通过马哈拉诺比斯判别分析来检测暂时休息状态。实验结果显示,检测准确率为80.2%。该结果显示,生理指标作为心理状态检测方法之一具有可行性。
这项研究旨在首先在家中测试痴呆症的社会问题,而无需去医院,可以通过简单地将传感器附加到头部并在15分钟内进行评估,而无需去医院,就可以做出与医生诊断相似的预测。这使我们能够满足想要检查自己和家人的潜在痴呆症患者的需求。从技术上讲,这是一种新的大脑测试技术,它将大脑连接到计算机,称为大脑计算机接口,并根据从100多个测试实验中获得的大数据来处理大脑的统计,因此不必进行医生的访谈或大脑成像测试。
知识图嵌入(KGE)是用于知识图完成的有效且可扩展的方法。但是,大多数现有的KGE方法都遭受了多种关系语义的挑战,这常常会降低其性能。这是因为大多数KGE方法都学习实体(关系)的固定连续向量,并做出确定性实体预测以完成知识图,这几乎无法捕获多个关系语义。为了解决这个问题,预先的作品试图学习复杂的概率嵌入,而不是固定的嵌入,但遭受了严重的计算复杂性。相比之下,本文提出了一个简单而有效的框架,即知识图扩散模型(KGDM)以捕获预测中的多个关系语义。它的关键思想是将实体问题的问题投入到条件实体生成中。具体而言,KGDM通过降级扩散概率模型(DDPM)来估计目标实体在预测中的概率分布。为了弥合连续扩散模型和离散kg之间的间隙,将两个可学习的嵌入功能定义为映射实体和与连续向量的关系。为了考虑KGS的连通性模式,引入了条件实体Denoiser模型,以生成针对给定实体和关系的目标实体。广泛的实验表明,KGDM在三个基准数据集中的现有最新方法明显优于现有的最新方法。
能够证明其拥有技术支持相关知识和技能,并能与国防部签订PBL合同,对第2部分所列主题的飞机、发动机和设备进行维修、供应、维护和技术支持的公司。4.申请方法希望提供信息的公司应在2024年2月2日星期五下午3点之前提交所附表格。