随着工程师通过提高计算能力来解决越来越复杂的问题,有限元分析模型的规模也不断扩大。如今,包含数千万个节点和元素的复杂模型非常常见。性能使 NX Nastran 成为需要解决当今日益庞大的问题的用户的首选解决方案。共享内存并行处理 (SMP) 与使用一个处理器的传统串行解决方案相比,并行使用多个处理器可以显著缩短解决方案的运行时间。共享内存并行处理 (SMP) 是具有共享内存的多处理器节点或具有多个内核的处理器节点的首选技术。SMP 用于较低级别的操作,例如矩阵分解和矩阵乘法。由于每个解决方案序列都涉及矩阵乘法,因此只要硬件支持 SMP,就可以在所有解决方案序列中激活 SMP。
出版物 Guowei Zhang、Nithya Attaluri、Joel Emer 和 Daniel Sanchez,《Gamma:利用 Gustavsons 算法加速稀疏矩阵乘法》,第 26 届 ACM 国际编程语言和操作系统架构支持会议 (ASPLOS'21) 论文集,2021 年 4 月
•线性代数:向量操作,矩阵乘法/裁定量/痕迹/特征值)•微积分:部分导数/梯度。•概率:共同分布(高斯,指数,伯努利,多变量正常);贝叶斯规则。•统计:期望,方差,协方差,中位数;最大似然。•数值优化:最大化功能,最小化功能,最大值,最小值;最大似然。
CSCI U421算法的设计和分析3个学时概念和算法设计的基本策略;计算时间和内存要求的分析;计算复杂性理论(NP-HARD和NP完整);图形操纵算法(连接的组件,最小跨越树,旅行推销员,图表中的周期以及图形的着色);搜索算法(第一个深度,第一个,最佳和alpha-beta minimax);和计算算法(矩阵乘法,线性方程系统,表达评估和排序)。先决条件:CSCI U321中的C等级或更高;或讲师的同意。
MME 简介 英特尔® Gaudi® 3 AI 加速器矩阵乘法引擎 (MME) 代表英特尔® Gaudi® 加速器系列 MME 引擎的第 5 代。这些 MME 是专用的高性能计算核心,专为矩阵运算而设计,矩阵运算是深度学习算法的基础计算类型。英特尔® Gaudi® 3 AI 加速器包含八个这样的 MME,每个 MME 都能够执行令人印象深刻的 64K 并行运算。这种大规模并行性可实现高度的计算效率,使这些 MME 特别擅长处理深度学习工作负载中普遍存在的复杂矩阵运算。
乘法累加器 (MAC) 单元执行两个数字相乘的运算,并将结果反复累加到寄存器中,以执行连续而复杂的运算。MAC 可以加快计算过程。它在数字信号处理中有着广泛的应用,包括滤波和卷积。MAC 在音频和视频信号处理、人工智能 (AI)、机器学习、军事和国防 [1] 中也有广泛的应用。由于这些运算需要循环应用乘法和加法,因此执行速度取决于 MAC 单元的整体性能 [2]。使用 MAC 单元可以提高准确性,还可以减少计算点积、矩阵乘法、人工神经网络和各种数学计算的时间延迟。
与矩阵乘法的算法问题有关[10; 29; 34],当代工作的显着部分涉及基本操作(例如张量产品[6],Kronecker产品[8],直接总和[29; 31]和许多其他[7; 30]。该问题的对称对准涉及多项式,而它们的自然代数操作是总和和产物。的确,这些总和的警告等级得到了广泛的研究[12; 24; 36],一个特定的众所周知的猜想认为,Waring等级的添加性是具有不连接变量家族的多项式的总和[4],但事实证明是错误的[33]。在产品下,警告等级的行为如何?这个问题似乎并没有吸引与总和相比的任何关注,但是以下众所周知的结果可能是一个很好的起点。
Agilex 5 FPGA 具有独特的功能组合,为您提供开发集成高性能 AI 的定制硬件所需的一切。这些功能的核心是一种称为 AI 张量模式的新型操作模式,该模式针对 AI 计算中使用的常见矩阵-矩阵或矢量-矩阵乘法进行了调整。此模式具有旨在有效处理小矩阵和大矩阵大小的功能。与 Cyclone V FPGA 相比,单个带有 AI 张量块的增强型 DSP 在单个 DSP 块的 INT8 操作中实现了高达 25 倍的峰值、理论上的 TOPS 改进。
介绍了一种稳健且快速的软件,用于求解广义 Sylvester 方程 (AR – LB = C, DR – LE = F),其中未知数为 R 和 L。这种特殊的线性方程组及其转置可用于计算广义特征值问题 S – AT 的计算特征值和特征空间的误差界限、计算同一问题的缩小子空间以及计算控制理论中出现的某些传递矩阵分解。我们的贡献有两方面。首先,我们重新组织了此问题的标准算法,在其内部循环中使用 3 级 BLAS 运算(如矩阵乘法)。这使得 IBM RS6000 上的算法速度提高了 9 倍。其次,我们开发并比较了几种条件估计算法,这些算法可以廉价但准确地估计该线性系统解的灵敏度。
摘要 — 我们提出了一种回声状态网络 (ESN) 的近似方法,该方法可以基于超维计算数学在数字硬件上有效实现。所提出的整数 ESN (intESN) 的储存器是一个仅包含 n 位整数的向量(其中 n < 8 通常足以获得令人满意的性能)。循环矩阵乘法被高效的循环移位运算取代。所提出的 intESN 方法已通过储存器计算中的典型任务进行验证:记忆输入序列、对时间序列进行分类以及学习动态过程。这种架构可显著提高内存占用和计算效率,同时将性能损失降至最低。在现场可编程门阵列上的实验证实,所提出的 intESN 方法比传统 ESN 更节能。