第 2 单元:代数和超越方程的解:迭代法 - 二分法、假位置法(Regula Falsi 方法)、不动点迭代法、牛顿拉夫森法、广义牛顿法、拉马努金法、穆勒法;加速收敛 - Aitken 方法、Graeffe 根平方法、复根。第 3 单元:矩阵:矩阵运算:加法、减法和乘法。矩阵、矩阵的转置、矩阵的逆、矩阵的秩、向量和矩阵范数、特征值问题:对称三对角矩阵的特征值、Householder 方法、QR 方法。第 4 单元:线性方程组的解:高斯消元法、高斯-乔丹法;非线性方程组的解:不动点迭代法、牛顿-拉夫森法,书籍:1. 数值分析入门方法,SS Sastry,Prentice Hall India,第 3 版。2. 计算机在物理学中的应用,Suresh Chandra,Narosa 3. 计算机导向数值方法,V. Rajaraman,第 3 版。1GP4-电子实验室。(实用)
快速傅里叶变换 (FFT) 是 20 世纪最成功的数值算法之一,在计算科学和工程的许多分支中得到了广泛的应用。FFT 算法可以从离散傅里叶变换 (DFT) 矩阵的特定矩阵分解中推导出来。在本文中,我们表明,量子傅里叶变换 (QFT) 可以通过进一步将 FFT 矩阵分解的对角因子分解为具有 Kronecker 积结构的矩阵的乘积来推导出来。我们分析了这种 Kronecker 积结构对经典计算机上秩为 1 张量的离散傅里叶变换的影响。我们还解释了为什么这种结构可以利用一个重要的量子计算机特性,使 QFT 算法在量子计算机上的加速比经典计算机上的 FFT 算法快得多。此外,还建立了 DFT 矩阵的矩阵分解与量子电路之间的联系。我们还讨论了基数 2 QFT 分解到基数 d QFT 分解的自然扩展。无需具备量子计算方面的先验知识即可理解本文所介绍的内容。然而,我们相信本文可能有助于读者从矩阵计算的角度对量子计算的本质有基本的了解。
旋转矩阵的列是单位向量,彼此正交 → A ˆ XB · A ˆ XB = A ˆ YB · A ˆ YB = A ˆ ZB · A ˆ ZB = 1,且 A ˆ XB · A ˆ YB = A ˆ YB · A ˆ ZB = A ˆ ZB · A ˆ XB = 0
课程内容:1。复合材料:基于结构和矩阵的定义,特征,分类,结构,功能感官和智能复合材料,优势和局限性,历史,工业场景和应用。2。增强纤维:高强度人为(玻璃,碳,芳香族等)和天然纤维,结构,特征,特性和应用。3。胡须:特征,属性和应用。4。聚合物基质复合材料(PMC):热塑料和弹性聚合物,它们的性能,特性和用作矩阵。热套,热塑料和弹性体PMC的制造方法。它们的特征特征,制作的复合材料的特性及其应用。5。金属基质复合材料(MMC):用于MMC及其性质的金属,金属金属和合金,MMC的生产,其性质,特征和应用。6。陶瓷基质复合材料(CMC):陶瓷的分类及其作为矩阵的潜在作用。使用精细陶瓷,碳,玻璃,水泥和石膏作为矩阵的陶瓷,制造,性能和应用的超结构处理。7。高级复合材料的分析:微力学 - 微力学 - 失败理论。8。后处理操作:加工,切割,抛光,热塑性PMC的焊接,粘结,铆接和绘画。高级后加工方法,例如超声波焊接,plasmacoating,WaterJet切割和激光加工。
对称的正定定义(SPD)矩阵渗透到许多科学学科,包括机器学习,优化和信号处理。配备了Riemannian的几何形状,SPD矩阵的空间受到了引人注目的特性及其所使用的riemannian Means,现在是某些应用中的金标准,例如脑部计算机界面(BCI)。本文解决了平均变量缺失的协方差矩阵的问题。这种情况通常发生在廉价或不可靠的传感器中,或者当伪影抑制技术删除导致等级矩阵的损坏的传感器时,阻碍了基于协方差的方法中Riemannian几何形状的使用。一种替代但可疑的方法包括删除缺少变量的矩阵,从而降低了训练集的大小。我们解决了这些局限性,并提出了一种基于大地凸的新配方。我们的方法在生成的数据集上进行了评估,这些数据集具有受控数量的丢失变量和已知基线,证明了所提出的估计器的鲁棒性。在实际BCI数据集上评估了这种方法的实际利益。我们的结果表明,所提出的平均值比经典数据插补方法更适合分类。关键字:SPD矩阵,平均值,缺少数据,数据插补。
对称的正定定义(SPD)矩阵渗透到许多科学学科,包括机器学习,优化和信号处理。配备了Riemannian的几何形状,SPD矩阵的空间受到了引人注目的特性及其所使用的riemannian Means,现在是某些应用中的金标准,例如脑部计算机界面(BCI)。本文解决了平均变量缺失的协方差矩阵的问题。这种情况通常发生在廉价或不可靠的传感器中,或者当伪影抑制技术删除导致等级矩阵的损坏的传感器时,阻碍了基于协方差的方法中Riemannian几何形状的使用。一种替代但可疑的方法包括删除缺少变量的矩阵,从而降低了训练集的大小。我们解决了这些局限性,并提出了一种基于大地凸的新配方。我们的方法在生成的数据集上进行了评估,这些数据集具有受控数量的丢失变量和已知基线,证明了所提出的估计器的鲁棒性。在实际BCI数据集上评估了这种方法的实际利益。我们的结果表明,所提出的平均值比经典数据插补方法更适合分类。关键字:SPD矩阵,平均值,缺少数据,数据插补。
先决条件:掌握基本的坐标几何、统计学和微积分知识 总接触时长:60 小时 目的:数学是工程专业学生的支柱。数学课程根据工程部门的需求不断变化。教学大纲的设计考虑到了各类学生的新兴需求。课程非常重视各种内容的应用。本课程将培养学生进行精确计算的分析能力,并为学生提供继续教育的基础。 课程目标:完成本课程后,学生将能够 i) 应用克莱姆法则和矩阵求逆的知识来寻找线性联立方程的解。ii) 应用直线、圆、圆锥曲线方程解决实际问题。iii) 应用各种积分评估技术和各种寻找一阶和二阶常微分方程的完全原函数的方法来解决工程问题。iv) 使用偏微分的概念来解决物理问题。 v) 分析实际情况下的统计数据和概率。 单元 1 行列式和矩阵 10 小时 1.1 行列式:4 1.1.1 2 阶和 3 阶行列式的定义和展开。子式和余因式 1.1.2 行列式的基本性质(仅限陈述)和简单问题 1.1.3 4 阶行列式的 Chios 方法 1.1.4 用 Cramer 规则解线性联立方程(最多 3 个未知数)。 1.2 矩阵: 1.2.1 矩阵的定义及其阶。 6 1.2.2 不同类型的矩阵。(矩形、方阵、行矩阵、列矩阵、上三角矩阵、下三角矩阵、对角矩阵、标量矩阵、单位矩阵、零矩阵) 1.2.3 两个矩阵相等 1.2.4 矩阵与标量的加法、减法、乘法以及两个矩阵的乘法 1.2.5 矩阵的转置、对称矩阵和斜对称矩阵、简单问题 1.2.6 奇异矩阵和非奇异矩阵、3 阶矩阵的伴随矩阵和逆矩阵
线性代数是一个简单而优雅的数学框架,是许多科学和工程学科的数学基石。线性代数被广泛定义为对以向量和矩阵表示的线性方程的研究,它为操纵和控制许多物理系统提供了数学工具箱。例如,线性代数是量子力学现象和机器学习算法建模的核心。在线性代数研究的矩阵领域中,酉矩阵因其特殊属性而脱颖而出,即它们保留范数并且易于计算逆。从算法或控制设置解释,酉矩阵用于描述和操纵许多物理系统。与当前工作相关的是,酉矩阵通常在量子力学中被研究,它们可以公式化量子态的时间演化,在人工智能中,它们提供了一种通过保留范数来构建稳定学习算法的方法。在研究酉矩阵时自然会出现一个问题,那就是学习它们有多难。例如,当人们想要了解一个量子系统的动态或将酉变换应用于嵌入到机器学习算法中的数据时,可能会出现这样的问题。在本文中,我研究了在深度学习和量子计算的背景下学习酉矩阵的难度。这项工作旨在提高我们对酉矩阵的一般数学理解,并提供将酉矩阵集成到经典或量子算法中的框架。本文比较了量子和经典领域中参数化酉矩阵的不同形式。一般来说,实验表明,无论考虑哪种参数化,学习任意 𝑑 × 𝑑 酉矩阵都需要学习算法中至少 𝑑 2 个参数。在经典(非量子)设置中,酉矩阵可以通过组合作用于酉流形较小子空间的算子的乘积来构造。在量子设置中,也存在在汉密尔顿设置中参数化酉矩阵的可能性,其中表明重复应用两个交替的汉密尔顿量就足够了
34。线性图(图片,核心)(1)35。线性图像(1 1/2)的矩阵符号 - 解释为线性插图 - 乘法乘法 - 依次 - 戒指结构 - 倒置36.矩阵的等级(1/2)37。高斯 - 线性方程式的算法:(2) - 高斯启发(1) - 解决方案理论(1)38。线性方程系统的迭代过程(1)39。决定因素(1)40。欧几里得向量,标量产品(1)41。功能分析概括(1)42。正交性(2)43。傅立叶系列(1)44。正交矩阵(1)45。特征值和自我向量(1)46。对称矩阵的特征值和自我向量(1)47。正方形形状和正定矩阵(1)48。Quadriken(1)50。矩阵标准和自valuations(1)51。相等值和自我向量的数值计算(1)
获得了局部酉变换下酉量子比特信道的标准形式。具体而言,证明了酉量子信道的 Choi 矩阵的特征值形成标准形式的一组完整的不变量。由此立即可知,每个酉量子比特信道都是四个酉信道的平均值。更一般地,只要 2(p 1 , . . . , pm ) 由信道 Choi 矩阵的特征值向量优化,酉量子比特信道就可以表示为具有凸系数 p 1 , . . . , pm 的酉信道的凸组合。标准形式的酉量子比特信道会将 Bloch 球面变换到椭圆体上。我们研究了将 Bloch 球面发送到相应椭圆体的自然线性映射的详细结构。