是 2 的幂。在所有这些有效情况下,反馈矩阵的特征值都被限制为 +1 或 -1。循环矩阵提供了更一般的特征值分布。此外,矩阵的向量乘法可以在硬件中非常高效地实现。此乘法可视为列向量与矩阵第一行的循环卷积。当 TV 是 2 的幂时,可以使用两个 FFT(其中一个可以预先计算)、两个 JV 向量之间的点积以及逆 FFT 来执行此类卷积。该算法的复杂度为 0(N\og(N))。借助蝶形或其他超立方架构,可以很容易地在 VLSI 中实现此矩阵向量积 [Leighton, 1992]。这些架构允许以 0(log(N)) 个时间步长计算 FFT,并且该算法可以流水线化。
Bini-Capovani-Lotti-Romani (1979) 研究了当矩阵的一个元素设置为零时,是否可以通过五次乘法(而不是简单的 6 次)来计算 M ⟨ 2 ⟩,即这个简化的矩阵乘法张量的秩是否为 5。
量子技术中的许多理论问题可以被提出并作为约束优化问题来解决。最常见的量子机械约束,例如,等距和单位矩阵的正交性,量子通道的CPTP特性以及密度矩阵的条件,可以看作是商或嵌入的riemannian歧管。这允许使用Riemannian优化技术来解决量子力学约束优化问题。在当前的工作中,我们介绍了Qgopt,这是量子技术中约束优化的库。QGOPT依赖于量子力学约束的基础riemannian结构,并允许在保留量子机械约束的同时应用基于标准梯度的优化方法。此外,QGOPT写在张量之上,这使自动分化能够计算优化的必要梯度。我们显示了两个申请示例:量子门分解和量子断层扫描。
我们研究了潜在的Dirichlet分配模型,这是一种流行的贝叶斯算法,用于文本分析。我们表明,未识别模型的参数,这表明了先前事项的选择。我们表征了模型参数的给定功能的后均值范围可以在对先前的变化的反应中实现,我们建议两种报告此范围的算法。我们的两种算法都依赖于获得多个非负矩阵的构造,这是语料库人口项术语频率矩阵的后绘制或其最大似然估计器的。关键思想是在所有这些非负矩阵因子上的最大化/最小化感兴趣的功能。为了说明我们的结果的适用性,我们重新审视了透明度提高对美国企业政策讨论的沟通结构的影响。
摘要 — 目的:脑电信号被记录为多维数据集。我们提出了一个基于增强协方差的新框架,该框架源自自回归模型,以改进运动想象分类。方法:从自回归模型可以推导出 Yule-Walker 方程,该方程显示了对称正定矩阵的出现:增强协方差矩阵。对协方差矩阵进行分类的最新技术基于黎曼几何。因此,一个相当自然的想法是将这种基于黎曼几何的方法应用于这些增强协方差矩阵。创建增强协方差矩阵的方法与 Takens 为动态系统提出的延迟嵌入定理有着自然的联系。这种嵌入方法基于两个参数的知识:延迟和嵌入维度,分别与自回归模型的滞后和阶数有关。除了标准网格搜索之外,这种方法还提供了计算超参数的新方法。结果:增强协方差矩阵的 ACM 性能优于任何最先进的方法。我们将使用 MOABB 框架在多个数据集和多个主题上测试我们的方法,同时使用会话内和跨会话评估。结论:结果的改善是由于增强协方差矩阵不仅包含空间信息,还包含时间信息。因此,它通过嵌入过程包含有关信号非线性分量的信息,从而允许利用动态系统算法。意义:这些结果扩展了基于黎曼距离的分类算法的概念和结果。
我的研究是自由概率的,重点是von Neumann代数与随机矩阵之间的相互作用。特别是,我通过熵,最佳运输,随机控制和连续模型理论研究这些对象。具有奇特状态的von Neumann代数可以理解为代数L∞(ω,µ)相关概率空间(ω,µ)的非交通性版本,但是von Neumann代数的分类和结构比经典可能性空间的复杂得多。某些von Neumann代数是将某些随机n×n矩阵的行为描述为n→∞的适当对象。这种连接的好处有两种方法:无限二维对象(von Neumann代数)在随机n×n矩阵的限制行为中对大有限n n散发,而矩阵近似值也会产生有关von neumann代数的一些结构性结果,这些结果否则可能会rard。主题:我在以下领域做出了贡献:
摘要 本研究旨在:(a)根据 SWOT 分析的结果找出 PT Guten Inc 的象限位置;(b)根据 SWOT 分析的结果找出 PT Guten Inc 应采用的适当定位策略。研究采用定量方法,数据收集技术包括直接观察、访谈、问卷调查和文献研究。分析基于影响公司战略决策的内部和外部环境因素。数据处理应用了 IFAS 和 EFAS 矩阵以及 SWOT 矩阵。IFAS 矩阵的结果为 3.29,EFAS 矩阵的结果为 3.19,这意味着 PT Guten.Inc 位于 SWOT 矩阵中的单元格 II,因此可以采取积极策略。SWOT 矩阵分析的结果表明,它位于象限 II,可以采用积极策略的 SO(优势-机会)策略,这意味着 PT Guten Inc 可以充分利用机会并发挥最大优势。
等级,正常形式,线性方程系统,线性独立和依赖的向量,矩阵的应用。II单元特征值和特征矢量9小时特征值,特征矢量,Caley-Hamilton定理,矩阵的对角线化,矩阵的二次形式。第三单元差分计算-I 9小时连续的分化,Taylor's&McLaurin的系列,不确定形式,部分导数,Euler的定理,总导数IV差异单位计算9小时Jacobians&IT&Maxima and Maxima and Maxima and Maxima and Mixima of两次多变功能,该功能可实现lagrange的功能。单元V复杂分析9小时的复杂数字,Demovier定理,复杂函数,复杂函数的差异,分析功能,C-R方程,谐波功能教科书:1。B. S. Grewal的高级工程学数学(德里Khanna出版物)。