单元1:数学和统计基础演算:函数限制,连续性,可不同,连续分化的概念,Liebnitz Theorem,渐近线,确定的积分,降低公式,普通微分方程的顺序和程度,线性微分方程,线性微分方程具有恒定系数和laplace的恒定差异。代数:映射,组,亚组,矩阵,矩阵的基本操作,矩阵倒数,矩阵在线性方程系统中的应用,向量空间,线性变换及其矩阵表示。分析开放集,闭合集,限制,连续性,泰勒定理,拉格朗日的平均定理,罗尔定理,序列和系列,串联的收敛。概率分布:二项式,泊松和正常分布的基础知识及其在生物学中的应用。随机变量;离散且连续的概率分布,概率质量函数,概率密度函数,数学期望。几何平面,直线,球体,锥体,圆柱体,圆锥体。单元2:化学在生物信息学动力学中的作用,原子结构,周期性特性,化学键合,有机化合物中电子的分布。自然平衡,化学动力学,P和D块元素,立体化学,构型异构主义,对称性元素,手性。界面特性,热力学,第一过渡系列元素的化学性质,配位综合,有机金属化合物,Alicyclic化合物酯酯包括活性甲基元素,芳族化合物,核化合物,核化合物,零组元素,相位元素,相位规则和电化学。
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 评估多重积分并应用概念来寻找面积和体积 UNIT - I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩,通过高斯-乔丹方法对非奇异矩阵进行逆运算,线性方程组:用高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅限于笛卡尔坐标系)、不当积分的定义:Beta 函数和 Gamma 函数及其应用。第四单元:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 评估多重积分并应用概念来寻找面积和体积 UNIT - I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩,通过高斯-乔丹方法对非奇异矩阵进行逆运算,线性方程组:用高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅限于笛卡尔坐标系)、不当积分的定义:Beta 函数和 Gamma 函数及其应用。第四单元:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
线性代数是一个简单而优雅的数学框架,是许多科学和工程学科的数学基石。线性代数被广泛定义为对以向量和矩阵表示的线性方程的研究,它为操纵和控制许多物理系统提供了数学工具箱。例如,线性代数是量子力学现象和机器学习算法建模的核心。在线性代数研究的矩阵领域中,酉矩阵因其特殊属性而脱颖而出,即它们保留范数并且易于计算逆。从算法或控制设置解释,酉矩阵用于描述和操纵许多物理系统。与当前工作相关的是,酉矩阵通常在量子力学中被研究,它们可以公式化量子态的时间演化,在人工智能中,它们提供了一种通过保留范数来构建稳定学习算法的方法。在研究酉矩阵时自然会出现一个问题,那就是学习它们有多难。例如,当人们想要了解一个量子系统的动态或将酉变换应用于嵌入到机器学习算法中的数据时,可能会出现这样的问题。在本文中,我研究了在深度学习和量子计算的背景下学习酉矩阵的难度。这项工作旨在提高我们对酉矩阵的一般数学理解,并提供将酉矩阵集成到经典或量子算法中的框架。本文比较了量子和经典领域中参数化酉矩阵的不同形式。一般来说,实验表明,无论考虑哪种参数化,学习任意 𝑑 × 𝑑 酉矩阵都需要学习算法中至少 𝑑 2 个参数。在经典(非量子)设置中,酉矩阵可以通过组合作用于酉流形较小子空间的算子的乘积来构造。在量子设置中,也存在在汉密尔顿设置中参数化酉矩阵的可能性,其中表明重复应用两个交替的汉密尔顿量就足够了
写出一组线性方程的矩阵表示并分析方程组的解 寻找特征值和特征向量 利用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数求不当积分 找出有/无约束的两个变量函数的极值。 评估多重积分并应用概念寻找面积、体积 UNIT-I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩计算,通过高斯-乔丹方法对非奇异矩阵进行逆计算,线性方程组:通过高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、利用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、利用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅在笛卡尔坐标系中)、不定积分的定义:Beta 函数和 Gamma 函数及其应用。 UNIT-IV:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
本文概述了在基于效果的目标确定过程中描述可操作知识构建相关的建模问题。这些问题的核心是需要考虑未来针对第四代对手的联盟行动的各种政治、军事、经济、社会、信息和基础设施维度。这种类型的战争反映了一个棘手的问题空间,其中任何指挥、控制、情报、监视和侦察 (C2ISR) 系统面临的一个主要挑战是在这个多维战场空间中正确制定行动框架。本文介绍了作者在当前研究中解决的一些建模问题:(1) 将指挥意图目标抽象分解为关键重心、支持这些重心的功能元素以及组成每个功能元素的战场空间节点;(2) 通过 Leontief 输入输出矩阵表示感知的数据/框架模型,使建模者能够近似每个参与者的隐性知识; (3) 明确描述 C2ISR 组织内的协作,反映不同参与者的隐性知识矩阵如何组合使用;(4) 考虑各种协作障碍——技术、认知、社会和组织——这些障碍影响 C2ISR 识别、链接和促进特定参与者代表不同利益相关者和专业领域的过程;(5) 评估 C2ISR 系统性能,评估内容包括计划的目标行动实现总体指挥意图目标的程度,以及由于对目标决策不符合交战规则和其他作战约束审查不充分而导致的意外负面后果程度。这种建模策略允许建模者构建透明的“审计线索”,将国家在信息技术、领导力发展、员工培训、人事管理和人员配备政策方面的投资与 C2ISR 系统产生的可操作知识的质量联系起来。
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 评估多重积分并应用概念来寻找面积和体积 UNIT - I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩,通过高斯-乔丹方法对非奇异矩阵进行逆运算,线性方程组:用高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅限于笛卡尔坐标系)、不当积分的定义:Beta 函数和 Gamma 函数及其应用。第四单元:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
这项工作的目的是加强乌克兰燃料和能源综合企业的经济安全。这项工作考虑了根据不同所有制形式的企业实体的地域隶属关系和运作特点将其划分为集群的问题。乌克兰能源综合体地域组织的一个特点不是其生产设施的孤立位置,而是它们中的大多数在能源系统中运作并紧密互连。根据提出的聚类分析、相似性、相关性和欧几里得距离方法,根据所研究的行业进行了地域集群划分。所获得的结果以矩阵表示形式呈现,这有助于调整可能的集群相似性并根据地域接近性和金融活动结果确定它们。进一步的研究致力于确定过去五年内有关以下特征的指标变化:集群的经济增长、与其他集群的互连、集群的金融稳定性和社会经济发展。这有助于概括所分析的数据并确定能源企业的弱点和优势。确定在积极的概括结果中处于领先地位的是黑海集群(34.88/1)和首都集群(30.34/2)和波多利斯基(27.91/3)。负面的是中部(25.15/9)、普里德尼普罗夫斯基(26.09/8)和顿涅茨克(27.26/7)。所获得的结果可以通过五年期间公司财务业绩的多样性以及对关键基础设施的外部影响因素的不断变化来解释。将企业划分为集群的拟议措施旨在进一步维持现有的经济安全水平。它们还旨在保护企业的所有能源生产来源,并进一步更新和/或重建从生产到最终消费者的能源服务链,这应该成为该国的优先发展领域。
编写一组线性方程的矩阵表示,并分析方程系统的解决方案查找特征值和本征媒介使用正交转换将二次形式减少到规范形式。分析序列和序列的性质。在平均值定理上求解应用程序。使用beta和伽马函数评估不正确的积分找到两个具有/没有约束的变量的功能的极端值。单元I:矩阵矩阵:矩阵的类型,对称;隐士偏度对称;偏斜;正交矩阵;单一矩阵;按梯形形式和正常形式的矩阵等级,高斯 - 约旦方法的非单个矩阵倒数;线性方程系统;解决同质和非均匀方程的求解系统。高斯消除方法;高斯Seidel迭代方法。单元-II:特征值和本征载体线性变换和正交转换:特征值和特征向量及其特性:矩阵的对角线化; Cayley-Hamilton定理(没有证据);查找矩阵的逆向和力量由Cayley-Hamilton定理进行;二次形式的二次形式和性质;通过正交转换单位-III将二次形式的形式降低至规范形式:序列与串联序列:序列的定义,极限;收敛,发散和振荡序列。系列:收敛,发散和振荡系列;一系列积极术语;比较测试,p检验,D-Alembert的比率测试; Raabe的测试;库奇的整体测试;库奇的根测试;对数测试。泰勒的系列。交替系列:Leibnitz测试;交替收敛序列:绝对和有条件收敛。单元-IV:微积分平均值定理:Rolle的定理,Lagrange的平均值定理,其几何解释和应用,Cauchy的平均值定理。
编写一组线性方程的矩阵表示,并分析方程系统的解决方案查找特征值和特征向量使用正交转换将二次形式减少到规范形式。在平均值定理上求解应用程序。使用beta和伽马函数评估不正确的积分找到两个具有/没有约束的变量的功能的极端值。评估多个积分,并将概念应用到查找区域,量ITUME-I:矩阵10 L矩阵的矩阵等级和正常形式的矩阵等级,正常形式,与juss-jordan方法的非单明性矩阵相反,高斯 - jordan方法,线性方程系统:均匀和非同性方程式的求解系统和非良好方程式的求解方法。UNIT-II: Eigen values and Eigen vectors 10 L Linear Transformation and Orthogonal Transformation: Eigenvalues, Eigenvectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of正交转换通过正交转换到规格形式的二次形式。单位-III:微积分10 L平均值定理:Rolle的定理,Lagrange的平均值定理,其几何解释和应用,Cauchy的平均值定理,Taylor的序列。确定积分的应用在评估曲线旋转的表面区域和体积(仅在笛卡尔坐标中),不当积分的定义:beta和伽马功能及其应用。单元IV:多变量演算(部分分化和应用)10 L极限和连续性的定义。部分分化:Euler的定理,总导数,Jacobian,功能依赖性和独立性。应用程序:使用拉格朗日乘数方法的两个变量和三个变量的功能的最大值和最小值。