本文展示了使用 Mediapipe 框架实现的 AI 个性化健身房姿势矫正器。如今,健身房和锻炼越来越受欢迎,考虑到这一点,保持正确的姿势对于避免受伤和最大限度地提高锻炼效果至关重要。但是,在没有任何帮助或反馈的情况下保持正确的姿势对任何人来说都是一项挑战。为了解决这个问题,我们的项目提供了一种解决方案,将人工智能和计算机视觉技术应用到现实世界的解决方案中。计算机视觉等技术将对锻炼姿势提供实时反馈。我们将使用 Mediapipe 库分析身体关键点,我们的系统可以准确检测和评估与正确姿势的偏差,根据每个人独特的体格提供个性化的矫正指导。通过大规模测试和与现有方法的比较来评估所提出系统的效率,从而有望通过推广更安全、更有效的锻炼来彻底改变健身行业。
简介:牙周病是由于位于龈上或龈下区域的致病细菌组成的细菌生物膜引起的。这些细菌可进入牙龈组织并引发炎症,导致牙龈炎和/或牙周炎。它们可进入血液,在体内迁移并到达口腔的远处。牙周病已被广泛研究并被认为是世界范围内一个重要的口腔健康问题。尽管传统上牙周病与成年人口有关,但儿童和青少年牙周病的患病率因其对长期口腔和全身健康的影响而受到越来越多的关注。方法:参考综合文献综述,使用电子数据库 lilacs、pubmed 和 scielo 中的数据库。选定与主题相关的文章目的:探讨儿童青少年牙周病与全身疾病的关系,旨在加深对该年龄段口腔与全身健康之间相互作用的认识。结果:选定了 50 篇文章,这些文章表明,牙周病是由于牙齿上的细菌生物膜数量与宿主对这种侵袭的反应之间的不平衡引起的。这种不平衡与局部因素有关,例如使用牙齿矫正器以及牙齿拥挤;以及系统性情况,例如糖尿病和肥胖症。讨论:通过研究发现,儿童青少年牙周病与全身疾病之间存在一定的关系。我们所得到的包括从牙龈炎的存在到导致侵袭性牙周炎的严重情况的所有信息。
在人类的节奏下颌活动中进行了下颌和头颈运动。j dent res。2000; 79(6):1378-1384。3。Einsbieler C,祈祷D,Marschik PB。胎儿运动:人类行为的起源。开发儿童神经。2021; 63(10):1142-1148。doi:10.1111/dmcn.14918 4。Sepulveda W,Mangiamarchi M.胎儿打哈欠。超声产科妇科。1995; 5(1):57-59。 doi:10.1046/j.1469-0705。1995。05010057.x5。 Manlove AE,Romeo G,Venugopalan Sr。颅面增长:术理论和对管理的影响。 口腔上颌面外科临床北部。 2020; 32(2):167-175。 doi:10.1016/j.coms.2020.01.007 6。 Osterlund C,Liu JX,Thornell LE,Eriksson PO。 肌肉纺锤体组成和人类年轻的kseter和Bi-Ceps Brachii肌肉的分布揭示了早期的生长和成熟。 Anat Rec(Hoboken)。 2011; 294(4):683-693。 doi:10.1002/ar.21347 7。 Vucic S,Dhamo B,Jaddoe VWV,Wolvius EB,Ongkosuwito EM。 学龄儿童的牙齿发育和颅面形态。 am J Orthod牙本质矫正器。 2019; 156(2):229-237.e4。 doi:10.1016/j.ajodo.2018.09.014 8。 kiliaridis S,Karlsson S,Kjellberg H.成长中的个体和年轻人的咀嚼性下颌运动和速度的特征。 j dent res。 1991; 70(10):1367-1370。 doi:10.1177/002 20345910700101001 9。 Acta Odontol Scand。 2000; 58(3):129-134。 生理行为。1995; 5(1):57-59。doi:10.1046/j.1469-0705。1995。05010057.x5。Manlove AE,Romeo G,Venugopalan Sr。颅面增长:术理论和对管理的影响。口腔上颌面外科临床北部。 2020; 32(2):167-175。 doi:10.1016/j.coms.2020.01.007 6。 Osterlund C,Liu JX,Thornell LE,Eriksson PO。 肌肉纺锤体组成和人类年轻的kseter和Bi-Ceps Brachii肌肉的分布揭示了早期的生长和成熟。 Anat Rec(Hoboken)。 2011; 294(4):683-693。 doi:10.1002/ar.21347 7。 Vucic S,Dhamo B,Jaddoe VWV,Wolvius EB,Ongkosuwito EM。 学龄儿童的牙齿发育和颅面形态。 am J Orthod牙本质矫正器。 2019; 156(2):229-237.e4。 doi:10.1016/j.ajodo.2018.09.014 8。 kiliaridis S,Karlsson S,Kjellberg H.成长中的个体和年轻人的咀嚼性下颌运动和速度的特征。 j dent res。 1991; 70(10):1367-1370。 doi:10.1177/002 20345910700101001 9。 Acta Odontol Scand。 2000; 58(3):129-134。 生理行为。口腔上颌面外科临床北部。2020; 32(2):167-175。doi:10.1016/j.coms.2020.01.007 6。Osterlund C,Liu JX,Thornell LE,Eriksson PO。肌肉纺锤体组成和人类年轻的kseter和Bi-Ceps Brachii肌肉的分布揭示了早期的生长和成熟。Anat Rec(Hoboken)。2011; 294(4):683-693。 doi:10.1002/ar.21347 7。 Vucic S,Dhamo B,Jaddoe VWV,Wolvius EB,Ongkosuwito EM。 学龄儿童的牙齿发育和颅面形态。 am J Orthod牙本质矫正器。 2019; 156(2):229-237.e4。 doi:10.1016/j.ajodo.2018.09.014 8。 kiliaridis S,Karlsson S,Kjellberg H.成长中的个体和年轻人的咀嚼性下颌运动和速度的特征。 j dent res。 1991; 70(10):1367-1370。 doi:10.1177/002 20345910700101001 9。 Acta Odontol Scand。 2000; 58(3):129-134。 生理行为。2011; 294(4):683-693。doi:10.1002/ar.21347 7。Vucic S,Dhamo B,Jaddoe VWV,Wolvius EB,Ongkosuwito EM。学龄儿童的牙齿发育和颅面形态。am J Orthod牙本质矫正器。2019; 156(2):229-237.e4。 doi:10.1016/j.ajodo.2018.09.014 8。 kiliaridis S,Karlsson S,Kjellberg H.成长中的个体和年轻人的咀嚼性下颌运动和速度的特征。 j dent res。 1991; 70(10):1367-1370。 doi:10.1177/002 20345910700101001 9。 Acta Odontol Scand。 2000; 58(3):129-134。 生理行为。2019; 156(2):229-237.e4。doi:10.1016/j.ajodo.2018.09.014 8。kiliaridis S,Karlsson S,Kjellberg H.成长中的个体和年轻人的咀嚼性下颌运动和速度的特征。j dent res。1991; 70(10):1367-1370。doi:10.1177/002 20345910700101001 9。Acta Odontol Scand。2000; 58(3):129-134。 生理行为。2000; 58(3):129-134。生理行为。Papargyriou G,Kjellberg H,KiliaridisS。成长中的个体中乳腺下颌运动的变化:六年的随访。doi:10.1080/000163500429262 10。Almotairy N,Kumar A,Trulsson M,Grigoriadis A.开发下颌感觉运动控制和咀嚼 - 系统 - ATIC审查。2018; 194:456-465。 doi:10.1016/j。 Physbeh.2018.06.037 11。 Lund JP,Kolta A. 中央咀嚼模式的生成及其通过感觉反馈的修饰。 吞咽困难。 2006; 21(3):167-174。doi:10.1007/s00455-006-9027-6 12。 Dellow PG,Lund JP。 有节奏阶段的中心时间的证据。 J生理学。 1971; 215(1):1-13。 doi:10.1113/jphysiol.1971。 SP009454 13。 Morquette P,Lavoie R,Fhima MD,Lamoureux X,Verdier D,Kolta A. 通过感觉反馈生成咀嚼中心模式及其调节。 prog神经生物学。 2012; 96(3):340-355。 doi:10.1016/j.pneurobio.2012.01.011 14。 Bakke M,Holm B,Jensen BL,Michler L,MöllerE。单方面,与咬合因子有关的8-68岁男性和男性的单方面咬合力。 扫描j dent res。 1990; 98(2):149-158。 doi:10.1111/ j.1600-0722.1990.tb00954.x 15。 div> Palinkas M,Cecilio FA,SiéssereS等。 健康受试者咀嚼效率的衰老:肌电图分析 - 第2部分。 Acta Odontol Latinoam。 2013; 26(3):161-166。 16。 Almotairy N,Kumar A,Grigoriadis A.2018; 194:456-465。doi:10.1016/j。Physbeh.2018.06.037 11。Lund JP,Kolta A.中央咀嚼模式的生成及其通过感觉反馈的修饰。吞咽困难。2006; 21(3):167-174。doi:10.1007/s00455-006-9027-6 12。Dellow PG,Lund JP。有节奏阶段的中心时间的证据。J生理学。1971; 215(1):1-13。doi:10.1113/jphysiol.1971。SP009454 13。Morquette P,Lavoie R,Fhima MD,Lamoureux X,Verdier D,Kolta A.通过感觉反馈生成咀嚼中心模式及其调节。prog神经生物学。2012; 96(3):340-355。 doi:10.1016/j.pneurobio.2012.01.011 14。 Bakke M,Holm B,Jensen BL,Michler L,MöllerE。单方面,与咬合因子有关的8-68岁男性和男性的单方面咬合力。 扫描j dent res。 1990; 98(2):149-158。 doi:10.1111/ j.1600-0722.1990.tb00954.x 15。 div> Palinkas M,Cecilio FA,SiéssereS等。 健康受试者咀嚼效率的衰老:肌电图分析 - 第2部分。 Acta Odontol Latinoam。 2013; 26(3):161-166。 16。 Almotairy N,Kumar A,Grigoriadis A.2012; 96(3):340-355。doi:10.1016/j.pneurobio.2012.01.011 14。Bakke M,Holm B,Jensen BL,Michler L,MöllerE。单方面,与咬合因子有关的8-68岁男性和男性的单方面咬合力。扫描j dent res。1990; 98(2):149-158。doi:10.1111/ j.1600-0722.1990.tb00954.x 15。 div>Palinkas M,Cecilio FA,SiéssereS等。健康受试者咀嚼效率的衰老:肌电图分析 - 第2部分。Acta Odontol Latinoam。2013; 26(3):161-166。 16。 Almotairy N,Kumar A,Grigoriadis A.2013; 26(3):161-166。16。Almotairy N,Kumar A,Grigoriadis A.食物硬度对儿童咀嚼行为的影响。临床口腔调查。2021; 25(3):1203-1216。doi:10.1007/s00784-020-020-03425-y
M.Tech。 计算机辅助设计(全职课程)学期 - I EME-501数值方法和计算机编程5(3-2-0)代数和超验方方程的单位1解决方案:牛顿 - 拉夫森方法,包括复杂根的方法,包括Graeffe的方法,Graeffe的根平方方法(基于计算机的Algorithm and Algorithm and groming for thulgorith and Algorithm and Amprog)。有限差异的插值公式,高斯的前进和向后插值公式,贝塞尔和拉普拉斯 - 埃弗莱特的公式,立方样条,使用Chebyshev多项式的最小二乘近似。 单元3线性同时方程的解:Cholesky's(Crout)方法,高斯 - 西德尔迭代和放松方法,特征值问题的解决方案;最小,最大和中间特征值(这些方法的基于计算机的算法和程序)单位-4数值分化和集成:使用差异操作员的数值差异化,Simpson的1/3和3/8规则,Boole的规则,Weddle的规则。 单位-5差分方程解:修改后的Euler方法,2 nd,3 rd和4 orders的runge-kutta方法,预测器 - 矫正器方法,普通微分方程的稳定性,Laplace's的溶液和Liebmann方法的poisson方程解决方案。 Text Books: 1. M. K. Jain, S.R.K. iyenger和R.K. Jain,“科学和工程计算的数值方法”,Wiley Eastern Ltd. 2. S. K. Gupta,“工程师的数值方法”,Wiley Eastern Ltd. 3。 B. S. Grewal,“数值方法”,Khanna出版物。 4。 A. D. Booth,“数值方法”,学术出版社,纽约5。M.Tech。计算机辅助设计(全职课程)学期 - I EME-501数值方法和计算机编程5(3-2-0)代数和超验方方程的单位1解决方案:牛顿 - 拉夫森方法,包括复杂根的方法,包括Graeffe的方法,Graeffe的根平方方法(基于计算机的Algorithm and Algorithm and groming for thulgorith and Algorithm and Amprog)。有限差异的插值公式,高斯的前进和向后插值公式,贝塞尔和拉普拉斯 - 埃弗莱特的公式,立方样条,使用Chebyshev多项式的最小二乘近似。单元3线性同时方程的解:Cholesky's(Crout)方法,高斯 - 西德尔迭代和放松方法,特征值问题的解决方案;最小,最大和中间特征值(这些方法的基于计算机的算法和程序)单位-4数值分化和集成:使用差异操作员的数值差异化,Simpson的1/3和3/8规则,Boole的规则,Weddle的规则。单位-5差分方程解:修改后的Euler方法,2 nd,3 rd和4 orders的runge-kutta方法,预测器 - 矫正器方法,普通微分方程的稳定性,Laplace's的溶液和Liebmann方法的poisson方程解决方案。Text Books: 1.M. K. Jain, S.R.K.iyenger和R.K. Jain,“科学和工程计算的数值方法”,Wiley Eastern Ltd. 2.S. K. Gupta,“工程师的数值方法”,Wiley Eastern Ltd. 3。B. S. Grewal,“数值方法”,Khanna出版物。4。A. D. Booth,“数值方法”,学术出版社,纽约5。K.E. ATKINSON,“数值分析概论”,John Wiley&Sons,NY EME-503固体的高级力学4(3-1-0)单位1:压力和应变分析,组成型关系,失败理论。 单元2:非圆形切片的扭转,平面应力和平整应变问题,疲劳分析的综述。 单元3:裂缝力学,非弹性行为,粘弹性,聚合物单元4:的结构和行为,单向复合材料和正性层层的行为,纤维复合材料的故障理论,在复合材料中的各种结构的发展,基于计算机的分析和固体的分析和解决方案的解决方案K.E.ATKINSON,“数值分析概论”,John Wiley&Sons,NY EME-503固体的高级力学4(3-1-0)单位1:压力和应变分析,组成型关系,失败理论。单元2:非圆形切片的扭转,平面应力和平整应变问题,疲劳分析的综述。单元3:裂缝力学,非弹性行为,粘弹性,聚合物单元4:的结构和行为,单向复合材料和正性层层的行为,纤维复合材料的故障理论,在复合材料中的各种结构的发展,基于计算机的分析和固体的分析和解决方案的解决方案
过去十年,增材制造(又称光聚合 3D 打印)取得了显著进步,使修复牙科的数字化制造成为可能。[1] 如今,3D 打印在牙科领域的应用包括牙科模型、手术导板、透明矫正器、夜间护齿器和夹板。[2,3] 构建精度和资源效率都得到了提高。[4] 立体光刻、数字光处理 (DLP) 和连续液体界面生产等现代 3D 打印技术利用了光聚合,并使用在紫外线照射下发生自由基链增长聚合的树脂。[1] 通常,将不同的光反应性(甲基)丙烯酸酯单体混合在一起形成配方,以定制材料特性。[5] 低树脂粘度(0.1 和 1.3 Pa s)是光聚合 3D 打印应用的主要要求,而光喷射需要的粘度甚至更低,约为 0.01 Pa s。通常会添加反应性稀释剂来降低配方的粘度。[6] 此外,为了设计机械性能,还会使用(甲基)丙烯酸酯功能低聚物。它们可分为三大类,即聚酯(甲基)丙烯酸酯、丙烯酸低聚聚氨酯和环氧丙烯酸酯。[7] 配方中经常含有双酚 A (BPA) 衍生物,例如 2,2-双[4-(2-羟基-3-甲基丙烯酰氧丙基)-苯基]丙烷,也称为双酚 A 甲基丙烯酸缩水甘油酯 (BisGMA)。加入基于 BPA 的刚性芳香族结构可使材料具有高刚度和高玻璃化转变温度,而 BisGMA 的侧链羟基可使其对玻璃、骨骼或牙釉质表面具有良好的粘附性。[8] 这些特性,再加上低固化收缩率,使得 BisGMA 广泛应用于牙科修复材料和热固性材料中。 [9] 尽管如此,使用双酚 A 基树脂也应受到严格审查,因为一些结果表明,双酚 A 的释放要么来自单体杂质,要么来自聚合物降解。[10] 由于 BPA 具有类似雌激素的特性,因此使用基于 BPA 的树脂
SB 448 - 密钥点传输内华达州需要一个强大的高压散装传输网络:(1)确保可靠的可靠且有弹性的传输网格,以适应未来的增长; (2)通过在区域足迹上提供更多样化的可再生资源供应,以有效且具有成本效益的方式协助电力公司以有效且具有成本效益的方式实现清洁能源目标; (3)协助内华达州促进经济发展的政策目标; (4)扩大传播访问可再生能源区以促进可再生能源的使用; (5)支持内华达州充分参与未来竞争性区域批发电力市场所需的区域传输互连。该法案要求NV Energy在2021年9月1日之前向PUCN提交,作为其三年期资源计划的修订,这是一个高压大量的大量传输基础设施计划,该计划将符合这些目标,涵盖计划在2028年之前运行的高压传输线路和相关设施。PUCN将在提交后的165天内就综合的高压传输基础设施计划作出决定。也是该法案:(1)创建一个区域传输协调工作组,以建议州长和立法机关加入或组建区域传输组织所需的行动; (2)允许PUCN通过调查加入或组建区域传输组织的潜在成本和收益来协助工作队; (3)要求该州的每个传输提供商在2030年1月1日或之前加入区域传输组织,除非委员会放弃或延迟此要求。运输电气化(TE)运输部门现在是内华达州温室气体排放量最大的最大百分比,实现内华达州的GHG排放目标将需要加速向EVS过渡。广泛采用电动汽车要求电力公用事业增加作为运输燃料的电力的获取,包括低收入内华达人以及历史上服务不足的社区。为了跳到内华达州所需的TE基础设施的投资,并为新工作提供了最大的经济回收效益和机会,该法案从2022 - 2024年从2022 - 2024年在五个“无遗憾”计划中提供了1亿美元的初始投资,并具有明显的公共福利:(1)一项跨国公司矫正器充电DEPOT计划; (2)城市充电仓库计划; (3)公共机构电动汽车充电计划; (4)运输,校车和运输电气化定制计划; (5)户外娱乐和旅游计划。为了确保这些投资能够到达所有内华达人,并解决该州一些最边缘化的社区的空气污染率更高,这五个计划的总支出中有40%必须针对历史悠久的社区投资。NV Energy到2021年9月1日,将向PUCN提交申请,以审查和批准其五个计划的详细建议。长期,该法案要求NV Energy作为其三年展资源计划归档的一部分,其中包括一项全面的TE计划,其中包括一系列拟议的计划,
植物科学招募访客简介传记迈克尔·巴拉什(PLB) - 学士学位,圣路易斯华盛顿大学环境生物学(2024年)。我的本科研究包括分析恢复物种池中的偏见,分别是物种保守主义对降级的草原景观中种子招募的影响。过高的草原福尔布斯(Grairie Forbs)通过纯活重测试了标准化的招聘,并在阶乘设计中接受了羊膜菌根真菌接种和除草的治疗方法。作为博士学位。 MSU的学生,我有兴趣继续对恢复高度保守的草原物种的动态进行类似的研究,这些动态通常未能以与矩阵或杂草差的本地Forbs相当的速度招募,并计划结合社区生态学,土壤生态学和功能性特质生态学,以发展对系统的理解。 我对Lars Brudvig博士的研究小组特别感兴趣,并且很想与Drs交谈。 Carolyn Malmstrom,Chris Blackwood和Laura Sullivan。 帕特里克·贝尔(Patrick Bell)(PBGB -HRT) - MS,植物生物学,罗格斯(Rutgers)(2024),BS,生物学,化学和教育专业的未成年人,沃伦·威尔逊学院(Warren Wilson College)(2010年)。 我的研究研究了榛子树的物际,杂种和新颖的阿维拉纳菌质种质,这与低于冷冻的天数有关。 我希望在MSU的博士学位使用植物育种来改善年度粮食作物中的非生物应激性。 Douches,Thompson,Vanburen和Jiang教授正在做有趣的工作,我很想亲自与植物弹性研究所的成员见面。作为博士学位。 MSU的学生,我有兴趣继续对恢复高度保守的草原物种的动态进行类似的研究,这些动态通常未能以与矩阵或杂草差的本地Forbs相当的速度招募,并计划结合社区生态学,土壤生态学和功能性特质生态学,以发展对系统的理解。我对Lars Brudvig博士的研究小组特别感兴趣,并且很想与Drs交谈。Carolyn Malmstrom,Chris Blackwood和Laura Sullivan。帕特里克·贝尔(Patrick Bell)(PBGB -HRT) - MS,植物生物学,罗格斯(Rutgers)(2024),BS,生物学,化学和教育专业的未成年人,沃伦·威尔逊学院(Warren Wilson College)(2010年)。我的研究研究了榛子树的物际,杂种和新颖的阿维拉纳菌质种质,这与低于冷冻的天数有关。我希望在MSU的博士学位使用植物育种来改善年度粮食作物中的非生物应激性。Douches,Thompson,Vanburen和Jiang教授正在做有趣的工作,我很想亲自与植物弹性研究所的成员见面。Caroline Bendickson(PLB) - 学士学位,与数学小学的生物学和化学专业,阿拉巴马大学的亨茨维尔大学(预计2025年5月)。 在哈德森帕(Hudsonalpha)生物技术研究所的Alex Harkess博士实验室中,我领导了一个独立的本科研究项目,该项目使用Angiosperms353 Bait捕获了trillium属的基于分子的系统发育,从而导致了第一批作者手动。 我还合作,与美国校园树基因组倡议一起,在奥本大学为Toomer's Oak(Quercus Virginiana)组装新的参考基因组。 目前,我正在帮助优化新型的计算管道矫正器,以识别可能影响各种富有ext exioial Agiosperms的SDR的性别确定的推定的植物直系同源物。 在研究生院,我的目标是使用计算方法来处理广泛的遗传学和进化问题,例如对各种植物种类的过程的调节,包括基因表达和口腔发育,以及我对Erich Grotewold博士,David Grotewold博士,David David Lowry博士,Bob Vanburen博士和Andrea案的实验室特别感兴趣。 Alex Bray(PLP) - 我目前正在与爱荷华州立大学的遗传学和全球卫生界未成年人攻读微生物学学士学位。 我在植物病理学方面最相关的研究经验一直在达伦·穆勒(Daren Mueller)博士的领导下,在科特瓦农业学院的两次实习期间。 我对蒂莫西·迈尔斯(Timothy Miles)博士,马丁·奇尔弗斯(Martin Chilvers)博士,亚历杭德罗·罗哈斯(Alejandro Rojas),格雷戈里·博尼托(Gregory Bonito),乔治·桑登(George Sundin)博士和米歇尔·赫林(Michelle Hulin)博士进行的研究特别感兴趣。Caroline Bendickson(PLB) - 学士学位,与数学小学的生物学和化学专业,阿拉巴马大学的亨茨维尔大学(预计2025年5月)。在哈德森帕(Hudsonalpha)生物技术研究所的Alex Harkess博士实验室中,我领导了一个独立的本科研究项目,该项目使用Angiosperms353 Bait捕获了trillium属的基于分子的系统发育,从而导致了第一批作者手动。我还合作,与美国校园树基因组倡议一起,在奥本大学为Toomer's Oak(Quercus Virginiana)组装新的参考基因组。目前,我正在帮助优化新型的计算管道矫正器,以识别可能影响各种富有ext exioial Agiosperms的SDR的性别确定的推定的植物直系同源物。在研究生院,我的目标是使用计算方法来处理广泛的遗传学和进化问题,例如对各种植物种类的过程的调节,包括基因表达和口腔发育,以及我对Erich Grotewold博士,David Grotewold博士,David David Lowry博士,Bob Vanburen博士和Andrea案的实验室特别感兴趣。Alex Bray(PLP) - 我目前正在与爱荷华州立大学的遗传学和全球卫生界未成年人攻读微生物学学士学位。我在植物病理学方面最相关的研究经验一直在达伦·穆勒(Daren Mueller)博士的领导下,在科特瓦农业学院的两次实习期间。我对蒂莫西·迈尔斯(Timothy Miles)博士,马丁·奇尔弗斯(Martin Chilvers)博士,亚历杭德罗·罗哈斯(Alejandro Rojas),格雷戈里·博尼托(Gregory Bonito),乔治·桑登(George Sundin)博士和米歇尔·赫林(Michelle Hulin)博士进行的研究特别感兴趣。我从事的项目包括优化核酸提取方法,以改善真菌病原体检测,进行种子健康质量测定法,以根据杀菌剂处理,场所和存储条件以及筛选各种农作物组织来评估真菌内生菌频率,以识别用于疾病抗性的疾病抗性成分,以识别用于传输表达和Vector Cresementering和Vector Eromentering的潜在遗传成分。作为密歇根州立大学的潜在博士生,我有兴趣在综合管理实践的背景下推进病原体检测技术和分析疾病的抗性。
第二部分审查来自Parti Ultimate Occam的Razor理论意味着最终的数学物理理论:假定1®NewpdeNewpde = G µ(ÖKµµ µ)¶Y /¶x µ =(W /C µ =(w /c)y,v,v,v,v,k oo = 1-r h /r = 1-r h /r = 1 /r = 1 /r = 1 /k rr,r h = e 2 x10 40 n /m(n /m)-1,0,1。,)。那么,NEWPDE的(稳定)多电体状态可以吗?是的,它是r = r H的复合3e,2p 3/2,我们在这里不需要QCD。与QCD形成鲜明对比的是电子(对新PDE的解决方案)在每2p 3/2(r = r H)叶中花费1/3的时间,从而解释了1/3e分数电荷的倍数(QCD的临时假设)。裂片被锁定在弥撒中心,不能离开,赋予渐近自由。(QCD的临时假设)。这两个正电子是超偏移主义的(g = 917,第7.5节),因此将场线分离范围缩小到解释强力的板中(由QCD假定)。也有6个2P状态解释了6种夸克风味。p波散射给喷气机。我们具有稳定性(DT'2 =(1-R H /R)DT 2),因为DT'时钟停止在R = R H。散射出3次质量(在2p 3/2中)还逆转了对nihihitation nihihihitation s = p r h 2»(1/20)barn中随后的对创建,使其仅仅是虚拟创造的歼灭事件。因此,我们在r = r H处的2p 3/2复合3E(质子)是唯一稳定的多E复合材料。两个身体(我们的两个高速正电子)paschen背部效应提供了矫正器(s,c,b)和para(t)状态,其每个状态由Frobenius Series Solution(CH.8,9,10)给出,使其各自的Hyperon质量质量倍数。f = 4.13x10 -15用于整数旋转。注意,我们在这些Frobenius系列案例中都在数学上求解了新的PDE,我们并不像QCD那样依赖于许多许多临时假设。使用newpde是进行粒子物理学的严格方法,类似于使用schrodinger方程Frobenius系列解决方案(例如给出laguerre多项式)是解决氢原子轨道状态的严格方式。Stable Newpde State 2P 3/2 at r=r H : Composite 3e Table of Contents Ch.7 Small C stable state of New pde is Composite 3e at r=r H 2P 3/2 h/e flux quantization z=0 Excited state Small C Paschen Back ortho (s,c,b) and para (t) energy levels Ch.8,9 Frobenius series solution r perturbation of each individual Paschen Back能级Ortho,Para(s,c,b; t)在每个级别上获得粒子多重组ch.10,11新的PDE高能横截面和核结合能CH.12比较和对比2p 3/2在R = r H的对比与主流玩具模型的理论。7.3等级11 b场中的newpde 2p 3/2在r = r h状态下的封闭电流环中的场量量化,正上音在圆圈中移动。请注意,如果带电的粒子在周围另一个区域的田间自由区域中移动,则该区域中有磁通量F。也可以包括最小的相互作用E&M动量/H = K+EA/H = EBR/H对于均匀B场。如果y相是循环上的唯一函数,则阶段kr =(ebr/h)r =(ebrr/h)= e(barea)/h = e f/h = n2 p。然后完成闭环后,粒子的波函数将获得附加的相位因子𝑒$