carlo.cazzaniga@mib.infn.it 关键词:闪烁体;伽马射线能谱;快中子;燃烧等离子体 摘要 在弗拉斯卡蒂中子发生器上测量了 3''x3'' LaBr 3 (Ce) 闪烁体对 14 MeV 中子辐照的响应,并通过专用的 MCNP 模型进行了模拟。发现有几种反应会影响测量的响应,其中中子非弹性散射和 79 Br、81 Br 和 139 La 同位素的 (n,2n) 反应起着关键作用。在实验阈值 0.35 MeV 以上,对 14 MeV 中子检测的总效率为 43%,并通过测量进行了确认。还观察到了晶体的辐射后活化,并根据 (n,2n) 反应中产生的短寿命 78 Br 和 80 Br 同位素的核衰变来解释。本文提出的结果与下一代燃烧等离子体聚变实验(如 ITER)中 γ 射线探测器的设计有关,这些实验需要在 14 MeV 强中子通量下进行测量。
背景:大气气溶胶,也称为短寿命的气候强迫剂,是大气中的重要组成部分,在全球和区域气候变化,空气质量恶化,可见性障碍和人类健康中发挥了重要作用。大气中气溶胶的存在可以改变太阳辐射的吸收和散射,从而影响温度模式,天气和气候系统。追踪气雾光学,物理和化学特性的趋势使科学家能够随着时间的流逝确定气溶胶组成和来源的变化。此知识对于理解空气质量的演变和制定有针对性的污染控制措施至关重要。空气质量建模对于模拟和预测污染物水平至关重要,有助于制定有效的空气质量管理策略。最后,包括先进的仪器和测量方法在内的气溶胶科学中的新兴技术正在彻底改变我们在分子水平上表征气溶胶的能力。这些剪裁技术为气溶胶特性,来源和转换提供了无与伦比的见解,促进了该领域的进步,并为应对空气污染挑战提供了新的途径。
塑料具有多种机械和热性能,已成为世界各地现代生活中必不可少的产品 [1,2],这不仅是因为它们制造成本低、稳定性和耐用性,还因为它们用途广泛。由于这些优势,根据欧洲塑料协会 (Plastics Europe) 的报告,塑料产量自 20 世纪 50 年代以来一直在稳步上升,到 2020 年已达到 3.67 亿吨 [3,4]。制造的塑料大部分用于包装短寿命产品的瓶子和袋子,导致大量一次性塑料的消费,这些塑料很容易被丢弃 [4,5]。这些活动产生的大量塑料导致数百万公吨的塑料废物在环境和垃圾填埋场中堆积 [2,6,7],造成毁灭性的环境污染,影响生态系统、野生动植物和人类健康,此外还会产生废物管理问题 [2,4,5,8]。其中,在环境中污染和积累为固体废物的最常见塑料类型是聚对苯二甲酸乙二醇酯(PET)、聚丙烯(PP)、聚乙烯(LDPE-HDPE)、氯乙烯(PVC)、聚氨酯(PU)和
摘要:等离子体产生的亚波长约束和增强电场可实现精确传感和增强光与物质的相互作用。然而,等离子体的高频率和短寿命限制了这项技术的全部潜力。找到替代品并研究其动力学至关重要。在这里,我们提出了一种实验方法,允许在时间域研究表面声子极化子。我们首先为超短脉冲光与极性材料相互作用建立理论框架。然后,我们进行飞秒泵浦探测实验,并展示表面声子极化的产生和时间分辨检测。通过比较实验和模拟,我们显示了明模式和暗模式的存在,质量因子高达 115。然后,我们研究模式相关的衰减和向环境的能量传递。我们的结果为实验探索表面声子极化子的动力学以及相干性在能量传递中的作用提供了一个平台。关键词:表面声子极化子,超快,相干性,亚波长限制
由于钍比铀更丰富,且其废料不易用于制造武器,因此人们一直对将其用作核燃料感兴趣。澳大利亚、比利时、巴西、加拿大、中国、丹麦、芬兰、法国、德国、印度、意大利、日本、韩国、荷兰、挪威、俄罗斯、英国、美国和其他国家都在研究钍燃料循环。然而,钍燃料循环存在一些挑战。由于钍具有惰性,辐照过的钍和用过的钍基燃料难以溶解在硝酸 (HNO 3 ) 中。232 U 的短寿命子产物会伴随高伽马辐射,而 232 U 总是与 233 U 伴生,这需要对燃料进行远程后处理和再制造。钍燃料循环中形成的镤也带来了需要解决的复杂问题。截至 2019 年底,只有印度运行了基于钍燃料循环的实验性核反应堆(René,2017 年,第 210 页)。中国已开发出钍熔盐反应堆 (TMSR) 的示范原型。
在支持所谓的表面晶格共振(SLR)的光学元面积中。5,10后者提供了在大面积上易于制造的优势,并且可能在集成光子学中使用。与原子的气体(BEC的原始平台)相反,11个激子北极星的寿命很短。这些短寿命限制了基态的EP密度的堆积,从而导致凝结阈值增加。因此,EP凝结需要强大的激光系统来产生足够高的激子并达到阈值,这使得Polariton激光不适合大多数应用。在本文中,我们通过显着降低由硅(SI)跨表面形成的全电腔中的损耗来证明较低的阈值EP构度,从而增加了EP寿命。最近的努力成功地通过取代支持MIE-SLR的低损坏介电元表面的等离子介电元表面来减少凝结阈值。12由于SLR的高Q因子(400 - 700),部分原因是材料损失的减少,凝结阈值显着降低。在这里,我们通过
方案 1 。Fe-氧介导的烯烃氧化。Fe-氧介导的烯烃氧化通常会生成相应的环氧产物。以苯乙烯 (1) 为模型底物,P450 催化的烯烃环氧化(环氧化物途径,紫色)和反马氏氧化(羰基途径,橙色)的拟议催化循环,首先形成铁-氧复合物,称为化合物 I (Cpd I)。第一个 C–O 键形成 (TS1) 生成短寿命自由基中间体 (Int-1),该中间体通过非常快速的第二个 C–O 键形成步骤 (TS2) 直接转化为环氧产物 (2)。这两个 C–O 键形成步骤通常以立体特异性方式进行,可能分步发生(当形成浅反应性自由基中间体时没有差向异构化)或以协同方式发生。另一种逐步反马氏氧化(羰基途径)被认为是通过分子内电子转移发生的,产生高反应性的碳正离子中间体(Int2)。随后的 1,2-氢化物迁移(TS3)产生羰基产物醛 3。
二氧化碳(CO 2)是气候变化的最著名和最重要的驱动力,但气候还对具有不同来源,缓解潜力,大气停留时间和气候变化潜力的其他人为型锻炼者做出反应。这些驱动因素包括非CO 2温室气体,短寿命的气候燃料,例如气溶胶和臭氧前体,以及陆地表面的变化。这些非CO 2驱动因素的明智定位,结合了实现净零CO 2排放的严重和持续的尝试,可能会导致大量避免气候损害。在大多数最先进的气候模型中,不可能评估非CO 2温室气体排放的气候影响,尽管正在发生令人兴奋的发展。当前使用更简单的工具,包括减少复杂性气候模型和气候指标,以评估非CO 2驱动因素的气候影响。 该底漆讨论了这些方法的优势和劣势,以及未来发展的机会和前景。更简单的工具,包括减少复杂性气候模型和气候指标,以评估非CO 2驱动因素的气候影响。该底漆讨论了这些方法的优势和劣势,以及未来发展的机会和前景。
活性氧和氮物质 (RONS) 的积累会导致细胞损伤甚至细胞死亡。RONS 是短寿命物质,因此难以直接、精确和实时测量。生物相关的 RONS 水平在 nM-µM 范围内;因此,需要高灵敏度的 RONS 探针。我们之前使用了对 H 2 O 2 灵敏度为 mM 的混合金核银壳纳米粒子。这些粒子通过光谱偏移报告了 RONS 的存在,而光谱偏移可以通过光声成像轻松量化。在这里,我们使用卤化物掺杂来调整这些材料的电化学性质,以更好地匹配 RONS 的氧化电位。这项工作描述了这些 AgI 涂层金纳米棒 (AgI/AuNR) 的合成、表征和应用。I:Ag 摩尔比、pH 值和初始 Ag 壳厚度都经过优化,以获得良好的 RONS 检测限。卤化物掺杂使银的还原电位从 E 0 Ag = 0.80 V 降低至 E 0 AgI = − 0.15 V,导致 H 2 O 2 增加 1000 倍,ONOO − 灵敏度增加 100,000 倍。AgI/AuNR 系统的蚀刻速度也比未掺杂的 Ag/AuNR 快 45 倍。AgI/AuNR 可轻松报告已建立细胞系以及小鼠模型中内源性产生的 RONS。
活性氧和氮物质 (RONS) 的积累会导致细胞损伤甚至细胞死亡。RONS 是短寿命物质,因此难以直接、精确和实时测量。生物相关的 RONS 水平在 nM-µM 范围内;因此,需要高灵敏度的 RONS 探针。我们之前使用了对 H 2 O 2 灵敏度为 mM 的混合金核银壳纳米粒子。这些粒子通过光谱偏移报告了 RONS 的存在,而光谱偏移可以通过光声成像轻松量化。在这里,我们使用卤化物掺杂来调整这些材料的电化学性质,以更好地匹配 RONS 的氧化电位。这项工作描述了这些 AgI 涂层金纳米棒 (AgI/AuNR) 的合成、表征和应用。I:Ag 摩尔比、pH 值和初始 Ag 壳厚度都经过优化,以获得良好的 RONS 检测限。卤化物掺杂使银的还原电位从 E 0 Ag = 0.80 V 降低至 E 0 AgI = − 0.15 V,导致 H 2 O 2 增加 1000 倍,ONOO − 灵敏度增加 100,000 倍。AgI/AuNR 系统的蚀刻速度也比未掺杂的 Ag/AuNR 快 45 倍。AgI/AuNR 可轻松报告已建立细胞系以及小鼠模型中内源性产生的 RONS。