光学传感器现在被广泛用作监视空间物体的经济有效的解决方案。ArianeGroup Helix ® 网络(前身为 GEOTracker ® 网络)完全基于光学传感器,可以为各种空间物体提供精确的角度数据。然而,对轨道物体的传统光学观测通常仅限于夜间。因此,有利的观测时间跨度是有限的,尤其是对于低地球轨道上的物体,这些物体通常位于相对于站点的地球阴影中。因此,白天观测的能力将允许延长观测时间并增加观测机会。2021 年,ArianeGroup 制造了一个短波红外 (SWIR) 传感器的原型,用于首次测试并允许在白天成功探测物体。在概念验证之后,ArianeGroup 继续致力于优化站点及其相关算法,以提高性能。在本文中,我们将描述站点的配置、获得的初步结果以及将集成到现有网络中的工业化运营站点的未来发展方向。
红外探测与现代微电子技术的融合为紧凑型高分辨率红外成像提供了独特的机会。然而,作为现代微电子技术的基石,硅由于其带隙为 1.12 eV,只能探测有限波长范围(< 1100 nm)内的光,这限制了其在红外探测领域的应用。本文提出了一种光驱动鳍片场效应晶体管,它打破了传统硅探测器的光谱响应限制,同时实现了灵敏的红外探测。该装置包括用于电荷传输的鳍状硅通道和用于红外光收集的硫化铅薄膜。硫化铅薄膜包裹硅通道形成“三维”红外敏感栅极,使硫化铅-硅结处产生的光电压能够有效调节通道电导。在室温下,该器件实现了从可见光(635 nm)到短波红外区域(2700 nm)的宽带光电探测,超出了常规铟镓砷和锗探测器的工作范围。此外,它表现出 3.2×10 −12 的低等效噪声功率
光子技术在材料和生命科学中的许多应用都需要可以将吸收的光子转换为紫外线(UV),可见(VIS),近红外(NIR)和短波红外(SWIR)区域中的发射光子。在这方面,量子点(QD)具有独特的光电特性,因为它们的尺寸决定了它们的吸光度和光量(PL)光谱。此外,它们表现出较大的长期系数和高PL量子产率(PL QY)。结合其小纳米尺寸,QD成为许多研究领域的重要工具,也是纳米技术巨大应用潜力的一个很好的例子。在2023年,诺贝尔化学奖2023年因发现和开发合成程序以获得胶体稳定的QD而授予了诺贝尔奖。长期以来,纳米颗粒可以从理论上显示量子现象,例如量子大小效应(QSE)和大小依赖性物理学特性,但长期以来对这些知识的实用和适用益处。在1980年代初期,Aleksey Ekimov开发了一种用于
Al 0.85 Ga 0.15 As 0.56 Sb 0.44 由于其电子和空穴电离系数之间的比率非常大,因此作为 1550 nm 低噪声短波红外 (SWIR) 雪崩光电二极管 (APD) 的材料最近引起了广泛的研究兴趣。这项工作报告了厚 Al 0.85 Ga 0.15 As 0.56 Sb 0.44 PIN 和 NIP 结构的新实验过剩噪声数据,测得的噪声在比以前报告的乘法值高得多的倍增值下(F = 2.2,M = 38)。这些结果与经典的 McIntyre 过剩噪声理论不一致,该理论高估了基于该合金报告的电离系数的预期噪声。即使添加“死区”效应也无法解释这些差异。解释观察到的低过量噪声的唯一方法是得出结论,即使在相对较低的电场下,该材料中电子和空穴碰撞电离的空间概率分布也遵循威布尔-弗雷歇分布函数。仅凭电离系数的知识已不足以预测该材料系统的过量噪声特性,因此需要提取该合金的电场相关电子和空穴电离概率分布。
摘要千禧空间系统使用商用现货 (COTS) 组件构建了一个移动地面观测系统,目的是探测和跟踪低地球轨道 (LEO) 上的卫星。我们首先演示了夜间卫星跟踪,然后将此功能扩展到白天操作。记录了夜间和白天观测系统的交易和考虑因素,重点关注我们的信噪比 (SNR) 光学模型,以选择适合白天卫星探测的短波红外 (SWIR) 传感器。我们讨论了通过提取可见光和 SWIR 卫星检测的目标 SNR 来验证我们的模型的尝试。总体而言,我们的 SNR 估计值对于我们的 VIS 观测偏保守,这可能是因为我们的模型假设了一个反射率为 20% 的球形目标。我们已经捕获了大约 30 颗最小到 1U CubeSat 大小(10cm^3)的 LEO 卫星和 10 颗地球同步 (GEO) 卫星。我们的 SWIR 建模结果为我们成功进行白天卫星观测奠定了基础,可以探测到超过 10 颗卫星,包括火箭体和其他大型目标。
WorldView-3 于 2014 年发射,是一个由 DigitalGlobe(现为 Maxar Technologies)开发、Ball Aerospace & Technologies 建造的卫星星座。WorldView-3 遥感平台部分设计用于地质勘探。其单一全色 (pan) 光谱带用于快速收集高分辨率图像,这对于捕捉清晰的图像细节(30 厘米/12 英寸像素分辨率)特别有用。可见光和近红外 (VNIR) 系统收集八个高分辨率(1.2 米/4 英尺,1 英寸像素分辨率)多光谱带,主要用于铁矿物、稀土元素、植被健康以及沿海和土地利用应用。全色和 VNIR 系统由八个短波红外 (SWIR) 波段(3.7 米/12 英尺,2 英寸像素分辨率)补充,用于测量和绘制粘土矿物,以及一个称为 CAVIS(云、气溶胶、蒸汽、冰和雪)的大气传感器,该传感器带有另外 12 个光谱波段。CAVIS 波段可对图像进行非常精确的大气校正,以消除云、气溶胶、蒸汽、冰和雪的影响。
公司:Voss Scientific, LLC 地点:新墨西哥州阿尔布奎基 主题:N171-085 技术类别:先进电子学 第二阶段提案标题:LUCS 的实施和演示,一种实时、超紧凑型多光谱 USPL 表征系统 SYSCOM:ONR FST 事件:NAVSEA 摘要:第二阶段的工作将把第一阶段选定的单个诊断集成到一个紧凑型便携式系统中,该系统设计用于 600-1700 nm 的近波和短波红外波段,并在选项中开发一个 3-5 m 波段系统。此外,单次相位表征技术将在极其紧凑的几何结构中实现,这对对准和光束轮廓都不敏感,同时提供详细的时间和相位轮廓。将实施先进的数据缩减算法和系统架构,单个图形用户界面 (GUI) 将显示用户可选择的、已处理的激光参数,包括实时跟踪品质因数的统计变化。关键词:激光、集成诊断、超短脉冲、综合脉冲特性、超紧凑、光谱测量、相位提取、可移动 POC:Don Voss,donv@vosssci.com
§大理石成像作为与Scanway S.A.的财团的主要承包商,已与育成计划的框架与欧洲航天局签署了一份合同 - 由ESAφ-LAB投资办公室管理,以开发非常高分辨率(VHR)的光下有效负载。§有效载荷包括一个可见的,近红外成像仪和高分辨率的短波红外成像仪。§光学有效载荷将在计划在2026年第一季度和随后的大理石星座上推出的第一颗大理石卫星飞行。§由ESA孵化计划资助的为期两年的项目涵盖了第一颗大理石卫星的有效载荷的完整开发,整合和调试。“在这里,在φ-LAB投资办公室,我们致力于支持欧洲工业,并不断实现地球观察项目的技术和商业进步。我们对Semovis项目及其开发VHR有效载荷和数据的雄心感到兴奋。”负责这项活动的ESA技术官员Pejman Nejadi说。“成功的结果将与该机构的更广泛目标保持一致,即利用空间来实现绿色的未来,快速而有弹性的危机,以命名一些。”
摘要— 先进星载热辐射和反射辐射计 (ASTER) 是由日本东京国际贸易和工业部 (MITI) 提供的研究设施仪器,将于 1998 年发射到 NASA 的地球观测系统早晨 (EOS-AM1) 平台上。ASTER 在可见近红外 (VNIR) 中有三个光谱波段,在短波红外 (SWIR) 中有三个波段,在热红外 (TIR) 区域有五个波段,地面分辨率分别为 15 米、30 米和 90 米。VNIR 子系统有一个后视波段,用于沿轨道方向的立体观测。由于数据将具有广泛的光谱覆盖范围和相对较高的空间分辨率,我们将能够区分各种表面材料并减少由混合像素导致的一些低分辨率数据中的问题。 ASTER 将首次提供高空间分辨率的轨道多光谱热红外数据以及所有 EOS-AM1 仪器中空间分辨率最高的表面光谱反射温度和发射率数据。ASTER 任务的主要科学目标是提高对发生在地球表面和低层大气上或附近的局部和区域尺度过程的理解,包括地表-大气相互作用。科学调查的具体领域包括:1) 陆地表面气候学;2) 植被和生态系统动态;3) 火山监测;4) 灾害监测;5) 大气
摘要。我们评估了在蒙古某铜矿床环境中,一种新型系统像素清晰校准场在航空高光谱矿物测绘中应用的机会和性能。校准场旨在用于估计特定地质场景中单个像素中关键矿物的灵敏度和量化。校准场的布局由两种不同的含铜岩石样品、一种来自矿山的低铜含量岩石材料、来自矿山的尾矿材料和具有明确已知光谱特征的校准材料组成。样品材料的缩放覆盖范围旨在开发统计方法,以基于像素的方法量化航空调查中的目标矿物。数据收集包括使用地球化学、X 射线衍射以及微观和电子光栅微观方法描述校准材料。使用可见光和近红外机载传感器以及短波红外机载传感器,从六个高度多次重复收集校准场的数据。经过像元校正和大气校正后,对1400、1900、2200nm处黏土矿物的吸收特征进行了精确测量和统计分析,给出了覆盖率与吸收特征特别是在2200nm附近的相关性,以及飞行高度对探测灵敏度的影响和