曲率影响多个长度尺度的物理特性,从形状和尺寸随曲率而急剧变化的宏观尺度,到具有结构、化学、电子和磁性短程有序的材料中的界面和不均匀性的纳米尺度。在关联、纠缠和拓扑占主导地位的量子材料中,曲率开辟了新特性和新现象的道路,这些特性和现象最近出现,可能对未来材料的基础和应用研究产生巨大影响。特别是,具有非共线和拓扑状态的磁性系统和 3D 磁性纳米结构可以从将曲率作为新的设计参数中受益匪浅,以探索在磁场和应力传感、微型机器人以及信息处理和存储中的潜在应用。本文概述了合成、理论和特性研究的最新进展,并讨论了利用曲率实现 3D 纳米磁性的未来方向、挑战和应用潜力。
识别支持环境温度下复杂可调磁序的材料是开发新型磁性设备架构的基础。我们报告了 Mn 2 XY 四方逆 Heusler 合金的设计,该合金能够承载磁性反斯格明子,其稳定性对弹性应变敏感。我们首先构建一个通用磁哈密顿量,捕捉这些材料中可能出现的短程和长程磁序。该模型揭示了接近磁相边界所必需的关键磁相互作用组合,其中磁结构极易受到弹性应变等小扰动的影响。然后,我们通过计算搜索可以实现这些关键相互作用的四元 Mn 2 (X 1 , X 2 ) Y 合金,这些合金很可能在逆 Heusler 结构中合成。我们认为 Mn2Pt1-zXzGa 材料系列(其中 X = Au、Ir、Ni)是获取所有可能磁相的理想系统,具有几种可以通过机械方式驱动磁相变的关键组成。
量子照明使用纠缠信号-闲置光子对来提高在具有明亮热噪声的环境中对低反射率物体的检测效率。其优势在低信号功率下尤其明显,这对于非侵入性生物医学扫描或低功率短程雷达等应用来说是一个有前途的特性。在这里,我们通过实验研究了微波频率下量子照明的概念。我们在自由空间检测装置中生成纠缠场来照射距离 1 米的室温物体。我们实现了基于线性正交测量的数字相位共轭接收器,尽管信号路径破坏了纠缠,但在相同条件下,其性能优于对称经典噪声雷达。从实验数据开始,我们还模拟了完美闲置光子数检测的情况,与相对经典基准相比,这产生了量子优势。我们的结果突出了微波量子电路首次在室温应用过程中面临的机遇和挑战。
注意:通常,各国都会公布其领土内适用的 RF 频谱带分配。此分配主要源自国际通信联盟 (ITU)《无线电规则》。但是,申请人应检查当地要求并在需要时请求授权,因为可能存在国家差异和具体分配(例如,ITU 分配的国家细分)。一些航空频段(例如 AM(R)S、AMS(R)S 5030-5091MHz)被分配给 ICAO 范围内的 UAS 操作,用于分类为 cat. C(“认证”)的 UAS 操作,但它们的使用可能被授权用于特定类别下的操作。预计其他授权频段(例如分配给移动网络的频段)的使用也可能在特定类别下获得授权。一些未经许可的频段(例如 ISM(工业、科学、医疗)或 SRD(短程设备))也可能在特定类别下被接受,例如用于对完整性要求较低的操作。 4)可能影响C3链路性能的环境条件。
ANTIETAM 配备了 AN/SPY-1A 相控阵雷达、AEGIS 作战系统和发射 SM-2 Blk I1 导弹的 MK41 垂直发射系统,是海军首屈一指的防空作战 (AAW) 平台。这些系统与 AEGIS 显示系统、包括 JTIDS Link 16、自动状态板和 17 个 NTDS 控制台在内的大量通信系统相结合,使其指挥和控制能力在支持战斗群作战指挥官方面首屈一指。ANTIETAM 还配备了 AN/SQS-53A 声纳、AN/SQR-19 拖曳阵列声纳和 LAMPS Mk I11 直升机,使其具有无与伦比的远程和短程反潜战 (ASW) 能力。两门 511 54 口径 MK 45 火炮由 MK 86 火炮火控系统制导,提供强大的海军火炮火力支援能力,并增强了鱼叉武器系统在反水面战 (ASUW) 中的作用。最后,战斧武器系统提供打击战能力,使 ANTIETAM 能够以致命的精度在水平线上打击陆地和海上目标。
Pedro L. Jimenez*、Jorge A. Silva** 和 Juan S. Hernandez*** *副教授 Universidad de San Buenaventura,Cr 8H N° 172 - 20 波哥大 - 哥伦比亚 **研究助理 Universidad de San Buenaventura,Cr 8H N° 172 - 20 波哥大 - 哥伦比亚 ***研究助理 Universidad de San Buenaventura,Cr 8H N° 172 - 20 波哥大 - 哥伦比亚 摘要 本文介绍了用于短程和固定翼无人机的开源和低成本自动驾驶仪的实验验证,以确定使用扩展卡尔曼滤波器 (EKF) 和总能量控制系统 (TECS) 进行姿态、速度和高度调整的模型飞机的 PID 控制器的标准调整方法。第一步是分析在实验飞行和硬件在环 (HIL) 仿真接口中获得的数据,然后将遥测数据与模型飞机飞行动力学进行比较,以验证自动飞行控制。最后,实现 PID 控制器的自动调谐,以在未来无人驾驶飞行器的发展中建立新方法。
11B - 步兵 13B - 加农炮机组成员 13F - 火力支援专家 13J - 火控专家 13M - 多管火箭发射系统机组成员 13R - 野战炮兵火力探测雷达操作员 13Z - 野战炮兵高级中士 19D - 骑兵侦察员 14G - 防空战斗管理系统操作员 14H - 防空预警系统操作员 14E - 爱国者火控增强型操作员/维护员 14G - 防空战斗管理系统操作员 14H - 防空预警系统操作员 14P - 防空反导机组成员 14S - 复仇者机组成员 (仅限 ARNG/USAR) 14T - 爱国者发射站增强型操作员/维护员 14E - 爱国者火控增强型操作员/维护员 14G - 防空战斗管理系统操作员 14H - 防空预警系统操作员 14P - 防空反导防御机组人员 14S - 复仇者机组人员(仅限 ARNG/USARR) 14T - 爱国者发射站增强型操作员/维护员 94M - 雷达修理工 94S - 爱国者系统修理工 94T - 短程防空系统修理工
我们提出了一种在可控原子、分子和光学系统中制备自旋压缩态的协议,特别适用于与里德堡相互作用兼容的新兴光学时钟平台。通过将短程软核势与外部驱动器相结合,我们可以将自然出现的 Ising 相互作用转换为 XX 自旋模型,同时打开多体间隙。间隙有助于将系统保持在可以产生计量学上有用的自旋压缩的状态集合流形内。我们检查了我们的协议对实验相关退相干的稳健性,并显示出比缺乏间隙保护的典型协议更优的性能。例如,在 14 × 14 系统中,我们观察到软核相互作用可以产生与全对全 Ising 模型相当的自旋压缩,即使存在相关的退相干,其压缩量与具有 1 / r 3 偶极相互作用的无退相干 XX 自旋模型相同,并且比具有 1 / r 6 相互作用的无退相干 XX 自旋模型高 5.8 dB 增益。
众所周知,由于电子表面散射,传统金属(如铜)的电阻率在薄膜中会增加,从而限制了金属在纳米级电子器件中的性能。在这里,我们发现在相对较低的 400°C 温度下沉积的磷化铌 (NbP) 半金属中,随着薄膜厚度的降低,电阻率会异常降低。在厚度小于 5 纳米的薄膜中,室温电阻率(1.5 纳米厚的 NbP 约为 34 微欧姆厘米)比我们的块体 NbP 薄膜的电阻率低六倍,并且低于类似厚度的传统金属(通常约为 100 微欧姆厘米)。NbP 薄膜不是晶体,而是在非晶态基质内表现出局部纳米晶体、短程有序。我们的分析表明,较低的有效电阻率是由通过表面通道的传导以及薄膜厚度减小时的高表面载流子密度和足够好的迁移率引起的。这些结果和在此获得的基本见解可以实现超越传统金属限制的超薄、低电阻率纳米电子线。
摘要:航运业正经历技术转型时期,旨在增加碳中性燃料的使用。采用替代燃料推进的船舶订单趋势明显。航运业未来的燃料市场将更加多样化,依赖多种能源。满足脱碳要求的一种非常有前途的方法是,通过整合当地可再生能源、岸电系统和电池储能系统 (BESS),使用可持续电能运营船舶。随着运营和订购的电池/混合动力推进船舶数量不断增加,这种船舶推进方式变得越来越普遍,尤其是在短程船舶领域。本文回顾了电气化或混合动力的最新研究、使用船舶 BESS 的不同方面以及混合动力推进船舶的类别。它还回顾了用于船舶混合动力推进的几种类型的储能和电池管理系统。本文介绍了 BESS 系统在调峰、负载平衡、旋转备用和负载响应方面的不同海洋应用。该研究还介绍了领先的海运市场制造商提供的混合动力/电力推进系统的最新发展。