> 小型奶牛场在加工、分销和为农民创造价值方面非常有效。建立一条有利于农民的短供应链可以开辟新的途径和选择。然而,这很有挑战性,伴随着风险,需要大量投资。 > 可以基于新颖的方案建立客户忠诚度,让消费者选择提供牛奶的奶牛。 > 建立一条短供应链会改变农民与消费者和客户的关系。然而,当农民生产大量牛奶时,他们可能仍需要将部分牛奶运送到工厂或超市。
摘要 — 当氧化层变薄,栅极长度变短时,MOSFET 器件中会出现短沟道效应 (SCE)。本研究的目的是寻找一种新的电介质和栅极材料来取代传统的氧化物二氧化硅 (SiO 2 ) 和多晶硅作为栅极材料。本研究的目的是研究使用不同类型的高 k 电介质材料和锗 (Ge) 作为栅极材料的 MOSFET 的性能。使用 Silvaco TCAD 工具制造和模拟 MOSFET 结构。基于电流-电压 (IV) 特性评估 MOSFET 的整体性能。结果表明,用 HfO 2 和 Ge 作为电介质和栅极材料制造的 MOSFET 具有较高的驱动电流,漏电流比传统 MOSFET 降低了 0.55 倍。因此,与 SiO 2 和多晶硅相比,MOSFET 结构中 HfO 2 和 Ge 的组合具有最佳性能,因为它在缩小器件尺寸时产生较小的漏电流和较小的 V th,从而降低 SCE。
摘要 – 量子系统的不可积性通常与混沌行为有关,这一概念通常适用于高维希尔伯特空间的情况。在表示这种行为的不同指标中,对超时有序相关器 (OTOC) 的长时间振荡的研究似乎是一种多功能工具,可以适用于自由度较少的系统的情况。使用这种方法,我们考虑在核磁共振量子模拟器上测量 Ising 自旋链局部算子的 OTOC 时,在扰乱时间之后观察到的振荡 (Li J. 等人,Phys. Rev. X,7 (2017) 031011)。我们表明,在只有 4 个自旋的链中,OTOC 振荡的系统性可以很好地定性描述从无限链继承的可积性到混沌的转变。
摘要E. COIL K-1中的基本不匹配校正过程称为非常短的贴片(VSP)修复,将t:G不匹配到C:G时在某些序列上下文中发现时。在DNA中胞质甲基化的背景下,两个底物不匹配(5'-ctwgg/3'-ggw'cc; w = a或t)出现,并减少5-甲基环胞嘧啶脱氨酸对胸腺氨酸的诱变作用。然而,VSP修复也已知可以修复T:G不匹配,而与5-甲基环胞嘧啶脱氨基(示例-CTAG/GGT- C)不会产生。在这些情况下,如果原始基对为t:a,VSP修复将导致t向C转换。我们已经对大肠杆菌序列数据库进行了马尔可夫链分析,以确定后者类别的修复是否改变了相关的四核苷酸的丰度。结果与预测VSP修复会倾向于耗尽包含序列的“ t”的基因组(示例-CTAG),同时富集了它的相应“ C”含量序列(CCAG)。此外,它们为肠道细菌基因组中的限制酶位点的已知稀缺性提供了解释,并将VSP修复鉴定为塑造细菌基因组序列组成的力量。
引言:研究脊椎动物的衰老和疾病等复杂生物表型受到规模和速度问题的限制。例如,小鼠天生的长寿命和低通量特性阻碍了迭代遗传学和脊椎动物生物学探索。非洲绿松石鳉鱼 Notho-branchius furzeri(以下简称鳉鱼)因其性成熟时间短(孵化后 3-4 周)和自然压缩的寿命(4-6 个月)而成为克服这一挑战和加速发现的有力模型( Hu and Brunet,2018 ;Kim et al.,2016 )。鳉鱼是实验室培育的脊椎动物模型系统中世代时间最短的(2 个月)( Hu and Brunet,2018 ;Kim et al.,2016 ;Pola čik et al.,2016 ),从而使快速脊椎动物遗传学成为可能。已经开发出一些用于推进鳉鱼遗传研究的工具,包括基因组测序(Reichwald 等人,2015 年;Valenzano 等人,2015 年)、Tol2 转基因(Allard 等人,2013 年;Hartmann 和 Englert,2012 年;Valenzano 等人,2011 年)、CRISPR/Cas9 介导的敲除(Harel 等人,2015 年)和 CRISPR/Cas13 介导的敲低(Kushawah 等人,2020 年)。这种遗传工具包使得人们能够发现衰老的机制(Astre 等人,2022a;Bradshaw 等人,2022;Chen 等人,2022;Harel 等人,2022;Louka 等人,2022;Matsui 等人,2019;Smith 等人,2017;Van
为什么微生物损害其宿主是进化生物学的一个基本问题,与我们对传染病的理解广泛相关。已经提出了几种假设来解释这种“毒力的进化”。从这个角度来看,我们在人类肠道微生物组的特定背景下重新检查了这些假设之一,即短暂的进化。根据简短的视觉进化假设,毒力是殖民宿主中生态位膨胀的产物,该宿主在该宿主中的膨胀产物,在该宿主中,共生微生物的变异在组织和感染引起发病率或死亡率的部位中建立种群。这种进化很短 - 视而不见的是,感染这些组织和部位的进化变体不会传输到其他宿主。我们提出的具体假设是,某些导致侵入性感染和疾病的细菌是居住在肠道菌群中的共生细菌的短暂性进化的产物。我们提出了支持该假设的观察结果,并讨论了评估其对与肠道菌群特定成员相关的感染和疾病的一般应用所固有的挑战。然后,我们描述了如何使用基因组数据和动物模型实验来检验该假设,并概述了该研究将如何提供有关毒力的进化和遗传基础的基本信息,以及深入研究的细菌,却知之甚少,却知之甚少,包括人类和其他哺乳动物的肠道微生物。
对于每个样本,从步骤 4b.15 中取出 2 µL PCR 扩增文库进行定量分析:接下来必须按照“Onso TM 文库的 qPCR 定量分析”程序使用 Onso Library 定量试剂盒 (PacBio 102-431-800) 通过 qPCR 准确评估文库数量。这将确保在簇生成期间能够实现最佳簇密度。注意:步骤 4b.17 可以与步骤 4b.16 同时进行。
自从世界卫生组织 (WHO) 于 2020 年 3 月宣布新型冠状病毒严重急性呼吸综合征 (SARS-CoV2) 疫情为全球大流行 COVID-19 (COronaVIrus Disease 19) 以来,我们已经进入了这场大流行的第三年,我们仍在与越来越多的病毒变异作斗争。迄今为止,全球已报告超过 5.5 亿例 COVID19 病例,死亡人数已超过 640 万,这一严峻的里程碑已经过去。事实上,到今年年底,死亡人数可能会超过 1500 万。这种大流行很有可能成为地方性流行病,而冠状病毒的全部进化潜力尚未揭示。下一次大流行即将到来。具有 SARS-中东呼吸综合征 (MERS) 和 SARS-CoV-2 特征的微生物可能会导致更为严重的生命损失。与其他病毒的共同进化不容忽视。世卫组织表示,我们应该预见到各种人畜共患、易发疫情的微生物,包括高致病性流感病毒株、尼帕病毒、埃博拉病毒、寨卡病毒或出血热病毒。世卫组织总干事谭德塞表示,“从进化的角度看,肯定会出现另一种比这种病毒更具传染性和致命性的病毒。”另一方面,在贫穷国家和武装冲突地区,由于疫苗接种受到阻碍,历史性疾病正在重新出现,而移民和流离失所影响了传播风险、限制了控制,并增加了疫情进一步爆发的可能性。此外,还有其他与黑死病一样对人类构成可怕威胁的生物恐怖主义或抗生素耐药性微生物。在大多数情况下,有效的预防和治疗方法都很有限。
摘要 我们重新审视了 Ekerå 和 Håstad 最近提出的用于计算短离散对数的量子算法。通过仔细分析该算法引起的概率分布,我们发现其成功概率高于以前报告的概率。受对分布理解的加深的启发,我们提出了一种改进的后处理算法,该算法比原始后处理算法效率更高、能够实现更好的权衡并且需要的运行次数更少。为了证明这些说法,我们通过对给定对数引起的概率分布进行采样,为该量子算法构建了一个经典模拟器。这个模拟器本身就是一项重要贡献。我们用它来证明,在针对具有短指数的 RSA 和 Diffie–Hellman 的加密相关实例时,Ekerå–Håstad 不仅在每次单独运行中,而且在整体上都比 Shor 更具优势。
摘要:CRISPR/Cas 最初于 35 年前在大肠杆菌中被发现,是一种防止病毒(或其他外源)DNA 入侵基因组的防御系统,它开创了功能遗传学的新时代,并成为生命科学所有分支领域的一种多功能遗传工具。CRISPR/Cas 以简便快速的方式彻底改变了基因敲除方法,但它在基因敲入和基因修饰方面也非常有效。在海洋生物学和生态学领域,该工具在“暗”基因的功能表征和基因旁系同源物的功能分化记录中发挥了重要作用。尽管它非常强大,但仍存在一些挑战,阻碍了一些重要谱系中功能遗传学的进展。本综述探讨了 CRISPR/Cas 在海洋研究中的应用现状,并评估了迅速扩大这一强大工具的部署以解决无数基础海洋生物学和生物海洋学问题的前景。