摘要:这项研究探索了钙钛矿太阳能电池的性能,包括MASNI3,CH3NH3SNI3,CSPBI3和CSSNGEI3,分析关键指标,例如效率,敞开电路电压(VOC),短路电流电流密度(JSC)和填充因子(JSC)和填充因子(ff)。使用SCAPS软件的模拟提供了基线数据,并使用高级计算技术对其进行了进一步验证和扩展。灵敏度分析揭示了诸如带隙能量和载体迁移率之类的参数的影响,而层优化和电路模型则提供了对增强设备性能的见解。比较分析和现实世界模拟弥合了实验室结果与实际应用之间的差距,并得到了机器学习模型的支持,以预测新型材料的效率。这种全面的方法有助于优化钙钛矿太阳能电池以进行未来的应用。
电源电压,V DD (见注释 1) 8 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 差分输入电压,V ID (见注释 2) V DD ± . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 输入电压范围,VI (任意输入) –0.3V 至VDD. . . . . . . . . . . . . . . . . . . . . . 输入电流,I I ± 5mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 输出电流,I O ± 30 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 在 T A = 25 ° C (或以下) 时短路电流持续时间 (见注释 3) 无限制 . . . . . . . . . . . . . . 连续总耗散 参见耗散额定值表 . . . . . . . . . . . . . . . . . . . . 工作自然通风温度范围,TA –40 ° C 至 85 ° C . . . . . . . . . . . . . . . . . . . . .存储温度范围 –65 ° C 至 150 ° C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 距外壳 1.6 毫米 (1/16 英寸) 处的引线温度 10 秒内为 260 ° C . . . . . . . . . . . . . . . . .
摘要最近,已广泛研究了摩擦电纳米生成器(TENG)以开发柔性和可穿戴电子产品。在Teng修饰的各种方法中,熔化近场直接写作是制造固定液体Teng的新方法。在这里,将带有传统聚合物引入电纺PCL,以制造复合固体底层底层,然后选择水,二甲基酮和增益作为液体互动层。在本文中,比较了固体底物效应,温度梯度效应和液体底物效应。在本文中采用了Teng的独立模型,并且PCL-PI复合固体底层底层固体层产生的电荷比原始的底层高10倍以上,显示出高电荷产生能力融化近场直接直接的书面微纤维。此外,将讨论详细的调查,如何获得高电路电压和短路电流。
表 2 详细列出了 DO-160G 第 22 节雷电感应瞬变敏感度标准中针对引脚注入测试的波形 3、波形 4/波形 1 和波形 5A 所规定的开路电压 (V OC ) 和短路电流 (I SC )。DO-160G 4 级测试的峰值电流远大于标准工业浪涌 IEC 61000-4-5 峰值电流。DO-160G 标准的波形形状和上升/衰减时间明显长于 IEC 61000-4-5 标准所规定的波形形状和上升/衰减时间,如图 2 所示。由于 DO-160G 第 22 节雷电标准涉及大量能量,因此使用外部 33 Ω 或 47 Ω A 引脚和 B 引脚总线限流电阻对 ADM2795E-EP 进行测试,以测试至 GND 2 。除了 ADM2795E-EP 集成 EMC 保护电路外,还需要这些电阻。但是,当测试到 GND 1 时,不需要限流电阻。ADM2795E-EP i 耦合器隔离技术可在出现这些极端瞬变时保护设备。
摘要 - 具有光学动力和数据遥测的基于最小的和无线近红外(NIR)的神经记录器是一种有希望的长期监测的有前途的方法,该方法具有最小的现状独立唱片仪之间的最小物理维度。但是,基于NIR的神经记录综合电路(IC)的主要挑战是在存在光引起的寄生寄生短路电流的情况下保持强大的操作。当信号电流保持较小以降低功耗时,尤其如此。在这项工作中,我们为电动机预测提供了一个容忍和低功率的神经记录IC,该记录可以在低调的300 µw/mm 2中充分发挥作用。,它以4.1噪声效率因子(NEF)伪抗抑制作用的放大器,芯片神经特征提取器和单个的Mote-Mote级增益控制,在38℃时达到了0.57 µW的最佳能力消耗。应用猴子的20通道预录的神经信号,IC可以预测用
电信电路Murray Wyma客户技术经理Enatel Christchurch,新西兰摘要如果电池无法绊倒负载破坏者,则由于短路事件,整个站点可能会变黑。在安全的电信中通常需要高9s的可靠性,这是不可接受的。随着锂离子电池的出现及其固有的电池管理系统(BMS),在电信电路中应用时,重要的是要了解它们的特性。已经在锂离子电池上进行了短路测试,以确定其触发负载断路器与电池断路器本身的能力,而不是内部BMS。本文提交了实际的实验结果,显示了各种电路排列中短路电流的示波器痕迹。对于行业而言,了解这些反应,断路器的响应速度以及可以何种水平断路器选择性(如果有的话),包括锂离子BMS模块的响应速度,这将非常有价值。简介电信电路通常由直接与电池和负载电路并行连接的整流器组成,如下图所示:
可以测试变压器。这些变压器的尺寸非常大,对运输造成了严重限制,这增加了挑战。显然,这种测试的成本和时间要求非常高。值得注意的是,模拟领域的最新进展导致了国际标准的变化,使得通过计算证明短路耐受能力成为可能(IEC 60076-5)。先进耦合场模拟的另一个例子是断路器中的电弧模拟,它提供了对设备中发生的物理现象的非凡洞察。断路器设计用于在几十毫秒内承受和中断高达数百 kA 的短路电流。测试这些不仅成本高昂且耗时,而且可测量参数的数量也非常有限。ABB 可以运行耦合的电磁/流体动力学/机械模拟,以捕捉断路器在故障电流中断 2 期间的真实行为。通过模拟,设计人员可以全面了解断路器中的流动条件。他们可以测量断路器内任何一点的压力和电压,并可以计算作用在关键部件上的力。这是一种强大的技术,使
可以测试变压器的外形尺寸。由于这些变压器尺寸非常大,对运输造成了严重限制,这增加了测试的难度。显然,此类测试的成本和时间要求非常高。值得注意的是,模拟领域的最新进展已导致国际标准的变化,使得通过计算证明短路耐受能力成为可能(IEC 60076-5)。高级耦合场模拟的另一个例子是断路器中的电弧模拟,它为设备中发生的物理现象提供了非凡的洞察力。断路器设计用于在几十毫秒内承受和中断高达数百kA的短路电流。测试这些不仅成本高昂、耗时,而且可测量的参数数量也非常有限。ABB 可以运行耦合的电磁/流体动力学/机械模拟,以捕捉断路器在故障电流中断期间的真实行为2。通过模拟,设计人员可以全面了解断路器内的流动情况。他们可以测量断路器内任何一点的压力和电压,并计算作用于关键部件的力。这是一项强大的技术,使
输入电压范围 (Vac) 90 – 135 (115) 170 – 280 (230) 浪涌电流 (Vn 和 In Load) I 2 t 16 A 5 毫秒 频率 47 – 63 Hz 6% 输入电流 (115 – 230 Vac) 6.4 – 3.4 A 内部保险丝 T 10 A 外部保险丝 (推荐) 16 A (MCB 曲线 B) 输出数据 输出电压 (Vn) 出厂设置 3% 24 Vdc 调整范围 (Vadj) 22 – 27 Vdc 强负载启动 (电容性负载) 50,000 F 施加主电压后的开启延迟 1 秒(最大) 24 V < 40°C 时的连续电流 (In) 20 A (永久) 24 V < 50°C 时的连续电流 (In) 18 A (永久) 24 V < 60°C 时的连续电流 (In) 16 A (永久) 24 Vdc 60°C 时的功率提升电流 (In) 20 A 3 分钟 最大电流 过载 4Vdc (永久) Imax=In60°Cx(1.8 -2.2) 短路电流 Icc 最大 2 秒:打嗝模式 永久:连续模式
摘要:近年来,能源系统(电力系统、供热系统)的运行理念发生了重大变化。本文概述了不使用化石燃料的局部平衡能源系统。本文基于欧盟指南和正式文件以及相关文献,在不使用化石燃料(煤炭、天然气和原油)的新能源系统中,阐述了局部能源平衡的概念。在此背景下,提出了利用可再生能源的局部能源自给自足问题,以及基于创新市场机制的局部智能电网概念。还关注了与局部平衡能源系统相关的技术问题,特别是光伏电源和储能。描述了在具有多种能源的网络中使用电气保护所面临的挑战。在这样的网络中,功率流不只在一个方向上。此外,由于短路电流的分布,保护的选择存在问题。此外,此类网络中的接地故障电流可能会失真,这会对剩余电流装置的运行产生负面影响。描述局部平衡系统的基本术语也已整理出来。最后,介绍了在不使用化石燃料的情况下创建局部平衡系统领域未来可能的研究路径。