抽象的低毒性太阳能集中器系统代表了未偿还光伏(PV)应用的重要挑战。尤其是,作为全息浓缩剂(HSC)的多重全息镜(MHL)提供了对建筑集成浓缩PVS有希望的可能性的见解。该技术不会影响关键的生态系统,并且可以将建筑物从能源消费者转化为能源供应商。它们可用于窗户,屋顶或墙壁,并且需要高衍射效率和广泛的验收角。在这项工作中,我们基于低毒性光聚合物,介绍了低空间频率525线MM-1的MHL的几种设计,并在窗玻璃上支撑。在633 nm处评估了这些HSC的平均衍射效率,而通过在不同入射角下太阳照明下的短路电流来评估接受角度。多功能和高效率全息元素已被用来集中到白天不同相对位置的阳光,避免了对昂贵的跟踪系统的需求。据我们所知,这是低毒性全息太阳浓缩器中高衍射效率(85%)和广泛接受角(104°)之间的最佳权衡。
带有INGAN多个量子井(MQW)的基于GAN的太阳能电池是在空间环境,集中器太阳系,无线电源传输和多连接太阳能电池中应用的有前途的设备。因此,在提交高温和高强度应力时,了解其降解动力学很重要。我们将三个带有P-Algan电子阻滞层的Gan-ingan MQW太阳能电池的样品在310 W/cm 2,175°C下以不同的p-gan层厚度为恒定的功率应力,持续数百小时。主要退化模式是降低开路电压,短路电流,外部量子效率,功率转换效率和电发光。,我们观察到,较薄的p-gan层会导致在细胞工作参数上观察到的更强的降解。对黑暗I-V特征的分析显示,低前向偏置电流的增加,电致发光的分析显示,由于压力,由(正向偏置)细胞发出的电闪光下降。这项工作强调,降解的原因可能与扩散机制有关,这导致活性区域的缺陷密度增加。扩散过程中涉及的杂质可能起源于设备的P侧,因此,较厚的p-gan层减少了到达活性区域的缺陷量。
这款业界领先的电机控制中心 50 多年来一直为您提供所需的安全性、性能和可靠性。• 设计通过 UL 845 认证并符合 NEMA 标准 • 通过 ArcShield™ 技术帮助减少电弧闪光事故 • 绝缘水平母线选项通过防止电弧传播帮助提高人员安全性。它是一种耐腐蚀、即装即用的绝缘包裹物,您可以快速组装。 • 节省空间的设计可最大程度地提高分段利用率,从而减少 MCC 占用空间 • 提供各种智能电机控制选项,例如: - 带有 E300™ 电子过载继电器的跨线启动器 - 软启动器 - 变速驱动器 • SecureConnect™ 技术有助于提供更安全的工作环境,能够在门关闭的情况下断开单个单元中垂直电源母线的电源 • 经过型式测试的机柜具有高短路电流额定值 • 经过工厂测试,可实现更快、更可靠的启动 • 采用 IntelliCENTER® 技术的 CENTERLINE 2100 MCC 具有内置网络和预配置软件,可以: - 通过全系统通信提高性能 - 共享诊断信息以进行预测性维护 - 在潜在故障发生之前发出警告 • CENTERLINE 2100 MCC 设计用于: - 允许向后兼容 - 提供母线支撑以实现统一支撑 - 完全隔离机柜并提供牢固的接地系统 - 通过节省空间的设计最大程度地提高分段利用率 - 改善散热
电源电压,V DD+ (见注释 1)8 V 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。电源电压,V DD– (见注 1)–8V。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。差分输入电压,V ID (见注释 2)± 16 V 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。输入电压,V I (任何输入,见注释 1)V DD– – 0.3 V 至 V DD+ 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...... div>...输入电流,I I (每个输入) ± 5 mA .. < /div>............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.输出电流,I O ± 50 mA ..........< div> 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.流入 V DD+ 的总电流 ± 50 mA .... div>........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。V DD– ± 50 mA 输出的总电流。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25°C(或以下)时的短路电流持续时间(见注3)无限制。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。连续总耗散 请参阅耗散额定值表。。。。。。。。。。。。。。。。。。。。。。。。。。。。...................工作自然空气温度范围,TA:C后缀0°C至70°C。......。。。。。。。。。。。。。。。。。。。。。。。。........我后缀 –40 ° C 至 125 ° C .................................Q 后缀 –40 ° C 至 125 ° C .。。。。。。。。。。。。。。。。。。。。。。。。...........M 后缀 –55 ° C 至 125 ° C ............。。。。。。。。。。。。。。。。。。。。。。存储温度范围,T stg –65 ° C 至 150 ° C 。............。。。。。。。。。。。。。。。。。。。。。。。。。...... div>......引线温度 1,6毫米(1/16 英寸)距离外壳 10 秒:D、N、P 和 PW 封装 260 ° C 。......J、JG、U 和 W 封装 300 ° C 。。。。。。。
在这项研究中,具有活性层的有机太阳能电池(OSC),非富烯烯(NFA)Y6作为受体的多种混合物,以及供体PBDB-T-2F作为供体的供体,通过一维太阳能能力模拟(SCAPS-1D)的一维太阳能(SCAPS-1D)模拟了这种类型的polimer-iC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC的型号模拟。活动层。pfn-br界面层固定在OPV设备中,可提供总体增强的开路电压,短路电流密度和填充因子,从而显示设备的性能。PEDOT:PSS是一种电导性聚合物溶液,由于其较强的孔亲和力,良好的热稳定性,高功能和高透明度在可见范围内,它已在太阳能电池设备中广泛使用作为孔传输层(HTL)。有机太阳能电池的结构是ITO/PEDOT:PSS/BTP-4F:PBDB-T-2F/PFN-BR/AG。首先,将活动层厚度优化为100 nm;之后,活动层厚度最高为900 nm。这些模拟的结果表明,活动层厚度可能明显达到500 nm,然后随着600 nm的活性层的增加而降低,还注意到短路电流和填充因子随着600 nm的增加而增加,而填充层则从600 nm的增加,而开放电压电路则随着活性层的增加而增加。最佳厚度为500 nm。
摘要。检测高能激光罢工是军事资产在未来战争中生存的关键。引入激光武器系统要求能够快速检测到这些罢工,而不会通过主动传感技术破坏军装的隐身能力。我们探索了热电发生器(TEG)用作自动的被动传感器来检测此类罢工的使用。使用各种功率等级,波长和光束尺寸的激光器进行实验,以击中2×2 cm 2以不同构型排列的市售TEG。在8.5至509.3 w∕cm 2之间,用808-,1070-和1980 nm激光击中TEG的开路电压和短路电流反应,比较了2至8 mm之间的斑点。teg表面温度表明传感器可以在接近400°C的温度下存活。teg开路电压幅度与净入射激光功率相比,与特定的辐照度水平更加密切,并且线性受到温度变化的限制。开路电压响应以10%至90%的升高时间为〜2至10 s,尽管表面温度未达到等级。以开路电压为传感参数,检测阈值高于标准偏差噪声水平,可以在激光罢工开始后的300毫秒内超过辐照度的辐射水平约为200 w∕cm 2。根据测得的电响应估算了估计高达16 MW的潜在收获功率水平。开发了与实验相对应的多物理有限元模型,以进一步优化轻质,低剖面TEG传感器,以检测高能激光罢工。©2020光学仪器工程师协会(SPIE)[doi:10.1117/1.oe.59.11.117105]
随着传感器技术的快速发展,摩洛电纳米生成器(TENGS)已成为智能电子产品的有前途的可持续电源。在此制造了一种新型的3-氨基丙基三乙氧基硅烷(CORE)和2,2-双(羟甲基)丁酸(单体)基于单体超支线聚酯的丁酸(单体)的超支聚酯,可通过便利的单步多粘密度技术(SI-HBP-G2)(SI-HBP-G2)。此外,SI-HBP-G2混合纤维混合物的新型聚偏二氟(PVDF)和不同的重量百分比(0、5、10、15和20 wt%)是由传统的静电纺织技术制备的。使用SEM/EDS,FTIR,NMR和XRD研究表征了准备的Si-HBP-G2及其混合物。使用铝(AL)作为计数器电极评估Si-HBP-G2含量对打开电路电势(V OC)和短路电流(I SC)的影响。其中,Si-HBP-G2/PVDF杂交垫(PG2-15)的15 wt%表现出卓越的电性能。几乎增加了5.9倍(22–130 V)的V OC和I SC的4.9倍(0.71–3.5μa),而不是PVDFFILEBER。这些结果揭示了Si-HBP-G2在底环式性能中的重要性。优化的TENG设备(PG2-15/al-Teng)在100mΩ外部负载下表现出0.2 wm-2的峰值密度。最后,PG2-15/al-Teng实际上展示了实时应用能源收集应用,例如为100个LED和秒表供电。
摘要近年来,将二维MXENE与钙钛矿太阳能电池掺入引起了很多关注。mxenes由于其表面终止功能组T X而显示出独特的电气功能。此外,将这种材料纳入钙钛矿太阳能电池已导致效率提高并提高了光电性能。在目前的工作中,使用comsol多物理学来模拟由电子传输层(ETL)组成的掺杂的钙钛矿太阳能电池,由钙钛矿(MAPBI 3)和MXENE(TI 3 C 2 T X)和带有配置ETL/ MAPBI 3 + MX的吸收层(MAPBI 3)和孔传输层(HTL)和孔传输层(HTL)。用于材料,将TIO 2(120 nm)用作ETL,并将螺旋形(140 nm)用作HTL。对吸收层(MAPBI 3 + MXENE)的厚度和浓度的影响进行了彻底研究以提高其效率。然后使用理想的厚度和掺杂浓度的理想变化来告知最佳太阳能电池结构的设计,该结构的最大效率为19.87%,填充系数为0.57,开路电压(V OC)为1.10V,短路电流电流密度(J SC)为31.97 mA/cm/cm 2。据我们所知,这是Comsol多物理学首次用于模拟用2D Ti 3 C 2 T X MXENE掺杂的钙钛矿太阳能电池。因此,结果给出了有意义的指导和洞察力,并深入研究了掺杂的钙岩太阳能电池的制造和进一步研究。关键字:Perovskite,mxene,comsol,仿真。
J-box 接线盒 J sc 短路电流 JV 电流密度-电压 KRICT 韩国化学技术研究院 LCOE 平准化电力成本 LID 光致衰减 MA 甲铵 MAI 甲基碘化铵 MOCVD 金属有机化学气相沉积 MOVPE 金属有机气相外延 MSP 最低可持续价格 MWT 金属包裹 NREL 国家可再生能源实验室 OpEx 运营费用 P3HT 聚(3-己基噻吩) PCBM 亚甲基富勒烯 苯基-C61-丁酸甲酯 PEAI 苯乙基碘化铵 PECVD 等离子体增强化学气相沉积 PERC 钝化发射极和背电池 PERL 钝化发射极后部局部扩散 PERT 钝化发射极后部全扩散 PET 聚对苯二甲酸乙二醇酯 POE 聚烯烃 PSG 磷硅酸盐玻璃 PTAA 聚(三芳胺) PV 光伏 PVCS 光伏组合开关设备 R&D 研究与开发 R2R卷对卷 RTP 快速热处理 S2S 片对片 SAS 硒化和硫化 SG&A 销售、一般及行政管理 SHJ 硅异质结 SJ 单结螺-OMeTAD 2,2',7,7'-四(N,N-二对甲氧基苯胺)-9,9'螺二芴 STC 标准测试条件 TCO 透明导电氧化物 TEF 技术演进框架 TJ 三结 TMAl 三甲基铝 TMGa 三甲基镓 TMIn 三甲基铟 USD 美元 V oc 开路电压 wph 每小时晶圆
高容量可充电电池在电动汽车和智能电网等中迫切要求。[1]锂(LI)金属电池(LMB)被认为是最有希望的下一代蝙蝠之一,因为电势最低(-3.040 V与标准氢电极)和高理论特异性能力(3860 mAh g-1)。[2,3]然而,LMB面临的可能严重的安全问题比商业电池(LIBS)面临着严重的安全问题,尽管LMB的首次兴起甚至比LIB的lmbs早20年,否则严重阻碍了它们的实际应用。[4,5]因此,确定LMB中的关键放热反应并制定适当的策略来减轻热安全风险是LMB实用应用的最重要任务之一。不同的滥用条件在内,包括热滥用,电子滥用和机械滥用可以触发一系列强烈的放热反应,从而产生可怕的热量和电池的热安全风险。[6–9]因此,指出高能LMB内部的关键放热反应以减轻热安全风险非常重要。LMB的热安全风险中涉及几种放热反应:(1)固体电解质相间(SEI)在高温下强烈分解,成为不良热源之一。[10](2)Li金属在高温下对SEI进行保护,从而导致其与非水晶的连续反应和产生巨大的热量。电池的局部温度可以在几秒钟内升至100–120°C。[11,12](3)基于Ni的层状阴极材料,尤其是高镍阴极,由于它们在高温下的相变而释放氧气。氧化气与电流/还原阳极(尤其是Li-Metal阳极)之间的化学串扰,产生巨大的热量,并最终导致工作电池的热安全风险。[13–15](4)内部短路是热安全风险期间电池的另一种主要热源。[16,17]由于分离器的失败,阴极和阳极直接接触,导致巨大和不受控制的短路电流和大量的焦耳热。[18]更糟糕的是,这些不良的