摘要 绿色革命基于赤霉素 (GA) 激素系统的遗传改造,通过“矮化”基因突变降低 GA 信号,使植物矮化,从而使植物适应现代农业条件。矮化的强 GA 相关突变体往往胚芽鞘长度缩短,由于干旱条件下幼苗出苗效果不佳,导致产量降低。这里我们提出赤霉素 (GA) 3-氧化酶 1 (GA3ox1) 作为大麦的另一种半矮化基因,它既能最佳地降低植物高度,又不限制胚芽鞘和幼苗的生长。通过对大量大麦种质进行大规模田间试验,我们发现天然的 GA3ox1 单倍型可适度降低植物高度 5 – 10 厘米。我们使用 CRISPR/Cas9 技术,生成了几个新的 GA3ox1 突变体并验证了 GA3ox1 的功能。我们发现,改变 GA3ox1 活性会改变活性 GA 异构体的水平,从而使胚芽鞘长度平均增加 8.2 毫米,这可以为在气候变化下保持产量提供必要的适应性。我们发现 CRISPR/Cas9 诱导的 GA3ox1 突变将种子休眠期增加到理想水平,这可能有利于麦芽行业。我们得出结论,选择 HvGA3ox1 等位基因为开发具有最佳身高、更长胚芽鞘和额外农艺性状的大麦品种提供了新的机会。
摘要:水稻SLR1基因编码DELLA蛋白(具有DELLA氨基酸基序的蛋白质),其功能丧失突变通过抑制植物生长而使植物矮化。我们利用CRISPR/Cas9基因组编辑技术在水稻中靶向突变DELLA/TVHYNP结构域,生成具有半显性矮化表型的slr1-d突变体。在31株转基因植株中获得了16个遗传编辑株系。深度测序结果表明,突变体在SLR1基因的TVHYNP结构域靶位点有6种不同的突变类型。同源编辑植株在T1代中选择了没有通过分离转录的T-DNA(T-DNA)的个体。slr1-d7和slr1-d8植株导致对赤霉素(GA)不敏感的矮化表型,叶片皱缩,节间缩短。通过 RNA-seq 进行的全基因组基因表达分析表明,在编辑的突变体植物中,两个与 GA 相关的基因 GA 20 OX 2(赤霉素氧化酶)和 GA 3 OX 2 的表达水平有所增加,这表明 GA 20 OX 2 充当了 GA 12 信号的转换器。这些突变体植物需要改变 GA 反应,至少部分是由于植物激素信号系统过程的缺陷,并阻止了细胞伸长。新的突变体,即 slr1-d7 和 slr1-d8 系,是有价值的半显性矮化等位基因,具有利用 CRISPR / Cas9 系统在水稻中进行分子育种的潜在应用价值。
采用人工光照的植物工厂比露天种植受作物栽培环境因素的影响更小,作为解决世界粮食问题的解决方案之一而受到关注。然而,植物工厂的栽培成本高于露天种植,目前,工厂化种植的有利可图的作物品种仅限于那些体型较小或生长期较短的品种。番茄是世界各地主要消费作物之一,但由于其株高和株宽较大,尚不适合在植物工厂中大规模生产。本研究利用 CRISPR–Cas9 方法对 GABA 超积累番茄品种#87-17 的 DWARF( D ) 和 SELF-PRUNING( SP ) 基因进行基因组编辑,以生产矮化番茄植株。在 T 1 基因组编辑代中获得了所需性状,果实性状与原始品种几乎相同。另一方面,含有 d 和 sp 突变的 #87-17 与 Micro-Tom 之间的 F 2 杂交品种矮化,但果实表型是两个品种性状的混合。这表明使用 CRISPR–Cas9 对这两个基因进行基因组编辑可以有效地赋予适合植物工厂化栽培的性状,同时保留原始品种的有用性状。
30970 改良的迈耶柠檬杂交种。即使在北方地区,一年四季都可以享用新鲜的柑橘!柠檬和橘子的杂交品种,也是最容易种植的柑橘之一,能够全年开花结果。芳香的白色花朵之后是大而橙黄色的果实,非常适合榨汁、烹饪和烘焙。嫁接到耐寒的矮化砧木上,树木很少超过 5 英尺高,因此很容易将它们带入室内。在春季、夏季和秋季,在至少有半天阳光的地方享受它。在深秋,在第一次严重霜冻之前将其移到室内光线充足的房间。产量高,自花授粉,1 至 2 年内结果。适合在 5 至 10 加仑的容器中种植。加仑盆。9-10 区。无法运送至阿拉斯加州、阿拉巴马州、亚利桑那州、加利福尼亚州、佛罗里达州、夏威夷州和德克萨斯州。每株 39.95 美元;3 株以上每株 36.95 美元。
不同基因组片段的差异性积累是具有节段基因组的病毒的共同特征。宿主内基因组片段积累的可重复和特定模式被称为“基因组公式”。有人推测和一些实验支持基因组公式通过拷贝数变异调节基因表达发挥功能性作用。然而,基因组公式调控机制尚未确定。在本研究中,我们调查了八分体纳米病毒蚕豆坏死矮化病毒 (FBNSV) 的基因组公式是否由作用于单个片段而不是病毒种群水平的过程调控。我们使用叶片渗透系统来表明 FBNSV 的两个积累最多的基因组片段在蚕豆组织中比其他片段具有更大的内在积累能力。然而,作用于单个片段水平的过程不足以产生基因组公式,这表明涉及作用于超片段水平的其他机制。事实上,在系统性感染过程中,具有重要功能的片段的缺失会极大地改变其他片段的相对频率,这表明基因组公式是片段组的一个属性。总之,这些结果表明,FBNSV 基因组公式是由一个复杂的过程形成的,该过程在单个片段和片段组水平上起作用。
山菲律宾棉兰老岛的达沃东方的Hamiguitan Range是唯一拥有侏儒森林的保护区,是保护和保护的优先地点。此系列具有不同的植被类型,例如农业生态系统,二翼型,山地和苔藓森林。进行了这项研究,以确定沿植被类型的树木和灌木的多样性。横断面步行和16个20 x 20 m的抽样图。采集的标本被分类并使用Malesiana和类型图像进行了分类和鉴定。对身份的评估是根据国际自然保护联盟(IUCN)确定的。这项研究的发现显示,有223种具有141属和71个家庭的树木,而46种具有26属和21个家庭的灌木。各自植被类型,侏儒森林获得了相对较高的树木和灌木的多样性价值,然后获得了山地森林。菲律宾对树木和medinilla apoensis for灌木的高物种重要性值(SIV)表明,这些物种在调节生态系统的稳定性方面具有重要作用。树木和灌木的物种相似性在山地和侏儒森林之间最高。这种植被类型的树轮廓由于超镁质基材而导致侏儒森林中树木矮小的矮化,因此给予了更高的保护和保护优先级。
摘要 水稻黄斑驳病毒 (RYMV) 是非洲最严重的水稻疾病之一。RYMV 的管理具有挑战性。遗传抗性提供了最有效和最环保的控制。隐性抗性基因座 rymv2 (OsCPR5.1) 已在非洲水稻 (Oryza glaberrima) 中被鉴定,然而,渗入 Oryza sativa ssp。由于跨越障碍,粳稻和印度稻仍然具有挑战性。在这里,我们评估了两种水稻核孔蛋白旁系同源物 OsCPR5.1 (RYMV2) 和 OsCPR5.2 的 CRISPR/Cas9 基因组编辑是否可用于将 RYMV 抗性引入粳稻品种 Kitaake。两种旁系同源物均已被证实可弥补拟南芥 atcpr5 突变体的缺陷,表明存在部分冗余。尽管两种旁系同源物之间存在惊人的序列和结构相似性,但只有 o scpr5.1 功能丧失突变体完全具有抗性,而 oscpr5.2 功能丧失突变体仍然易感,这表明 OsCPR5.1 在 RYMV 易感性中起着特殊作用。值得注意的是,在 OsCPR5.1 的 N 端结构域(预计为非结构化)中存在短的框内删除或替换的编辑线对 RYMV 高度敏感。与单个拟南芥 AtCPR5 基因突变导致植物严重矮化不同,oscpr5.1 和 oscpr5.2 单敲除和双敲除突变体既没有表现出明显的生长缺陷,也没有表现出类似病变表型的症状,这可能反映了功能分化。OsCPR5.1 的特定编辑,同时保持 OsCPR5.2 活性,为在优良稻种系中产生 RYMV 抗性以及与其他 RYMV 抗性基因或其他性状有效叠加提供了一种有前途的策略。
水稻黄斑驳病毒 (RYMV) 是导致非洲最严重的水稻疾病之一。RYMV 的管理具有挑战性。遗传抗性是最有效且环境友好的控制方法。隐性抗性基因座 rymv2 (OsCPR5.1) 已在非洲水稻 (O. glaberrima) 中被鉴定,然而,由于跨越障碍,将其渗入 O. sativa ssp. japonica 和 indica 仍然具有挑战性。在这里,我们评估了是否可以使用 CRISPR/Cas9 基因组编辑两个水稻核孔蛋白同源物 OsCPR5.1 (RYMV2) 和 OsCPR5.2 来将 RYMV 抗性引入粳稻品种 Kitaake。这两个同源物已被证明可以补充拟南芥 atcpr5 突变体的缺陷,表明存在部分冗余。尽管这两个旁系同源物在序列和结构上具有惊人的相似性,但只有 o scpr5.1 功能丧失突变体具有完全抗性,而 oscpr5.2 功能丧失突变体仍然易感,这表明 OsCPR5.1 在 RYMV 易感性中起着特殊作用。值得注意的是,在 OsCPR5.1 的 N 端结构域(预计为非结构化)中存在短的框内缺失或替换的编辑系对 RYMV 高度敏感。与导致植物严重矮化的单个拟南芥 AtCPR5 基因突变相比,oscpr5.1 和 oscpr5.2 单敲除突变体既没有表现出显著的生长缺陷,也没有表明程序性细胞死亡的症状,这可能反映了同工型在其他重要功能方面的功能冗余。对 OsCPR5.1 进行特定编辑,同时保持 OsCPR5.2 活性,为在优良稻种系中产生 RYMV 抗性以及与其他 RYMV 抗性基因或其他性状有效叠加提供了一种有前途的策略。