摘要:合成、表征了 Ni/α-Al2O3 催化剂和一系列双金属催化剂(包括 Pd-Ag、Ni-Pd、Ni-Zn、Ni-Ag 和 Ni-Ga)并在乙炔选择性加氢制乙烯中进行了测试。双金属催化剂 Ni-Ga 与 Pd-Ag 基催化剂相比表现出几乎相同的乙烯选择性。评估了 Ni/Ga 比对乙炔加氢催化活性和乙烯选择性的影响。通过透射电子显微镜、X 射线衍射、氢气程序升温还原和 X 射线光电子能谱进行表征,以确定 Ni-Ga 基催化剂上的活性相,这与催化性能和催化剂上发生的反应机理相关。 Ni-Ga晶格结构中Ga的存在限制了解离H*的移动,降低了乙烯的吸附结合能,从而可以防止乙炔过度加氢。
每种文献的研究期间主要是在1970年代在Ishikawa县(1978)11)和1990年代的Ishikawa县进行的。
• 史塔克家族在战场设置期间可放置 1 个额外的桩和 1 个额外的栅栏,它们必须完全放置在桌子的蓝色区域内。放置这些额外的地形块时,其他地形块可以忽略,只要没有地形块彼此之间的距离在 1 英寸以内即可。• 葛雷乔伊家族部署在桌子的红色区域,如设置图所示。• 史塔克家族部署在桌子的蓝色区域,如设置图所示。• 史塔克家族的增援部队不会像平常一样部署。相反,在第 4 轮开始时,在该轮的第一回合之前,史塔克家族玩家可以将所有增援部队完全部署在任何友方桌子边缘或侧翼的近距离内,以及每个以这种方式部署的单位的近距离内(这不是他们的激活)。
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2022 年 1 月 20 日发布。;https://doi.org/10.1101/2022.01.17.476477 doi:bioRxiv 预印本
图 2。通过离子交换剥离块状 MMT 和真空过滤 MMT 薄片分散体来制造独立式 MMT 膜的过程。(a) 块状 MMT 粉末。(b) 在红色激光束下对块状粉末进行离子交换剥离后形成的 MMT 薄片水分散体。(c) 通过真空过滤薄片分散体形成的独立式 MMT 膜。(d) MMT 的 XRD 图案,显示 (001) d 间距为 12.3 Å。(e) 剥离的 MMT 薄片的 AFM 图像和 (f) 剥离的 MMT 薄片的相应 AFM 高度分布,显示单层厚度。
该学会成立于 1807 年,当时名为伦敦地质学会,是世界上最古老的地质学会。它于 1825 年获得皇家特许状,旨在“研究地球的矿物结构”。该学会是英国的国家地质学会,拥有约 8500 名会员。它覆盖全国,约 1500 名会员居住在海外。该学会负责地质科学的所有方面,包括专业事务。该学会拥有自己的出版社,出版学会的国际期刊、书籍和地图,并充当美国石油地质学家协会、SEPM 和美国地质学会出版物的欧洲经销商。拥有地质学或相关学科公认荣誉学位并至少拥有两年相关研究生经验,或在地质学或相关学科拥有不少于六年相关经验的人员均可申请成为研究员。拥有不少于五年相关地质学研究生实践经验的研究员可申请认证,经批准后可使用 C Geol(特许地质学家)的称号。有关该协会的更多信息,请联系英国伦敦 W1V 0JU 皮卡迪利街伯灵顿宫地质学会会员经理。该协会是一家注册慈善机构,编号210161。
抽象的背景和旨在被忽略的Ter-rimanial碳(C)池的忽略分数是与沉积在植物(Phytoliths)(所谓的植物)中的生物二氧化硅相关的。与主C池相比,此部分很小,但值得注意,因为它可能是长期的C下沉,因为植物可以保护有机C免受矿化的影响。但是,由于方法论和理论局限性,该主题都引起了争议和不清楚。范围我们旨在回顾这个主题,并特别强调:(i)与植物岩相关的C浓度范围; (ii)土壤植物植物保存和随后的有机碳矿化; (iii)植物内C隔离的全球估计值。最近的工作表明,[phytoc]可能比目前
The objective of this study was to develop hybrid nanoparticles (HNCs) from two monomers, methyl methacrylate (MMA) and butylacrylate (BA), using miniemulsion polymerization method in the presence of Algerian Montmorillonite (AMMT), and different types of surfactants, such as the double-chain cationic didodecyldimethylammonium bromide (DDAB),undecafluoro n-戊酰十氧基乙烯醚(C 5 F 11(EO)10)和混合表面活性剂系统(FSO-100/DDAB)。少见研究,尤其是关于获得去角质杂交纳米颗粒的可能性。在这项研究中,优化了聚合反应的几个参数,并允许得出结论: MMA-CO BA,c)用于采条微型乳化聚合,修饰的MMT充当表面活性剂,并构成了粘土交给粘土的交流,并稳定了微型乳化剂的粒子 - 溶剂界面。粘土的百分比越高,较不稳定的是微型乳液,而其多分散性越高,d)最稳定的纳米颗粒是用AMMT-HTA +重量为0.5%获得的,这是去角质纳米复合材料的特征。添加2%的N六烷烷(N-HD)导致尺寸降低了50%,表明该化合物在微乳液中稳定颗粒的有效性。
这是技术集合。 DCAS9是CAS9的变体,没有DNA裂解活性,而是与GRNA结合,在这项研究中,我们将其用作GRNA的RNA结合蛋白。 (注3)下一代序列:一个可以同时将数百万到数亿个核酸序列序列序列序列的测序仪,本研究使用它同时分析了GRNA条形码的组成。 (注4)生物信息学:融合领域之一,例如生命科学,信息学和统计学。这项研究通过对通过CIBER筛选获得的大量信息以及有关已知蛋白质到基因网络获得的大量信息探讨了SEV释放重要的生物学过程。联系(请联系演讲者有关研究的详细信息)Kojima Ryosuke,东京大学医学研究生院副教授,电子邮件:kojima [at] M.U-tokyo.ac.ac.ac.ac.jp通用事务团队,东京大学医学院研究生院,电话:03-5841-3304 Email:ISHOMU:ISHOMU [at M.ACACPOK] M.UAC。 Pharmaceutical Sciences, University of Tokyo Tel: 03-5841-4702 Email: shomu[at]mol.f.u-tokyo.ac.jp Public Relations Division, Japan Science and Technology Agency Tel: 03-5214-8404 Email: jstkoho[at]jst.go.jp Higashide Takanobu, Emerging Research Promotion Department, Japan Science and Technology Agency电话:03-5214-7276电子邮件:souhatsu inquiry [at] jst.go.jp
