立方体卫星是用于空间研究的微型卫星,每个单位的质量不超过 1.33 公斤。由于其制造成本低和应用灵活性,它们被广泛应用于太空应用。由于它们使用商用现货组件,因此必须考虑 1 单位立方体卫星内部组件的热性能。本文对 1 单位立方体卫星进行了瞬态热分析,以分析其从运载火箭进入轨道后的前 29 秒内的行为。瞬态热分析得出的温度范围超过了最佳极限。因此,为了减少热量耗散,卫星的热管理系统主要包括两种类型:主动控制系统和被动控制系统。为了将关键组件维持在其工作温度,实施了被动热控制。使用隔热带和多层绝缘来分析 1 单位立方体卫星的内部组件。使用石墨纤维隔热带和气凝胶多层绝缘作为内部组件,发现 1 单位模块化立方体卫星更适合在低地球轨道条件下使用。关键词:立方体卫星;瞬态热分析;被动热控制;热带;MLI
M. Dresselhaus获得了马萨诸塞州技术学院(MIT)的研究所教授Mildred S. Dresselhaus的国家科学奖章,并获得了1990年国家科学奖章,以纪念她与金属和半学的电子特征,以及具有妇女的科学机会的工作。PrésidentGeorge Bush去年11月在白宫举行了30名专家和工程师的仪式。Fresselhaus的领域一直是固态物理学,重点是电子材料中的结构特性关系。最近,她集中在石墨插座化合物,石墨纤维以及通过静脉和植入来修饰电子材料上。Dresselhaus也因在为科学和工程领域的女性提供更广泛的机会方面的工作而闻名。国会在1959年获得了国家科学勋章,以表彰科学家和工程师的出色贡献,以通过技术的发展或建立技术训练有素的劳动力来改善美国的福祉。在他的讲话中,布什说:“许多日常的荣誉者都是我们如何有效地将科学转化为基本技术的主要例子。我想到的是米莉·德雷斯·塞尔豪斯(Millie Dresselhaus),可以说是她的génération的最重要的物理学家和工程师,他们的辛勤工作有助于彻底改变半导体。”Fresselhaus自1960年以来一直与MIT相关联,他担任电气工程和计算机科学Départaient和Physicsdépartaient的教师任命。她当选为1985年和1990年担任夫人的夫人议员,并曾担任Fourmi材料研究和座谈会组织者的首席编辑。
世界各地的钢结构都容易在其使用寿命期内恶化。这种恶化可以分别由疲劳负荷和极端天气条件引起的裂缝和腐蚀引起的钢构件的潜在强度和刚度。此外,在设计和施工阶段可能会出现缺陷。进行钢结构改造的常规方法是使用焊缝或螺栓连接到结构的钢板[1]。但是,这种方法呈现出缺点,包括焊接施加的残余应力,这可能会对结构造成新的损害[2,3]。此外,钢板容易受到腐蚀的影响,其重量重量在安装过程中构成了挑战[4,5]。另外,将外部粘结碳纤维增强聚合物(CFRP)的应用可以提供耐用的解决方案来应对这些挑战[6,7]。CFRP材料的高强度重量比和耐腐蚀性在选择改造钢组件的选择中具有重要作用[8-10]。近年来,高级复合材料的应用在改造民用基础设施方面已获得接受。在这些类型的材料中,CFRP和石墨纤维增强聚合物(GFRP)已得到很好的确定[11]。但是,由于其强度较高,CFRP表现出优于GFRP的优势。研究表明,CFRP改造系统可以有效地增强钢构件的弯曲能力并延长其疲劳寿命[4,12 - 32]。CFRP根据其弹性模量分类为低模量(LM),正常模量(NM)或中间模量(IM),高模量(HM)和超高模量(UHM)。没有一种一致的方法来表征每个类别的弹性模量范围。但是,它可以相对于表1所示的钢弹性模量表示[33]。