石榴在人类历史上占有重要地位,是最古老的栽培农产品之一。众所周知,石榴的原产地是地中海、西亚和伊朗,如今在美国(加利福尼亚和亚利桑那)、阿根廷、中国、阿富汗、印度、阿拉伯、智利和墨西哥北部都有种植。1、2 石榴是石榴科中最重要的植物。石榴的名称来源于 Malum granatum,在拉丁语中意为“颗粒状的苹果”。1 石榴有多个多刺的枝条,叶子是椭圆形的;可食用的果实是一种浆果,由白色或红色单花的子房产生,里面有种子和果肉。3 石榴的 50% 由可食用部分组成,50% 由果皮组成(Fawole 和 Opara)。4
口腔拥有各种各样的微生物群落,包括细菌,真菌,病毒和原生动物。这些被共同称为口服微生物群。由于次生代谢产物的释放,这些微生物群落结果的平衡变化会导致许多牙齿问题,例如牙齿龋齿和牙周疾病。龋齿是最常见的慢性疾病,由于产生酸性微生物,饮食碳水化合物和宿主特征而发生。此过程始于微生物斑块,因此形成生物膜。它导致无机物质的矿化,从而导致牙齿结构的崩溃[1]。链球菌突变是一种非运动型,革兰氏阳性球菌,可代谢碳水化合物。这是一种辅助厌食症,在此过程中起着至关重要的作用,并且是龋齿的主要贡献者[2]。
摘要使用琼脂二聚体扩散方法研究了香料果皮与壳聚糖混合在抑制四种微生物的生长中,抑制四种微生物的生长,抑制四种微生物的生长。发现与壳聚糖混合的石榴果皮的粗提取物有效地抑制了所有测试过的微生物的生长。在另一项研究中,将黄瓜水果(SpeedMax品种)涂有1)壳聚糖,2)与壳聚糖混合的石榴果皮中的粗提取物,并与对照组(浸入水中)进行比较。黄瓜在7°C下储存,并每7天记录每7天的黄瓜的质量归因。通过测量黄瓜水果的体重减轻,成熟和变质来记录实验结果。发现与壳聚糖混合(CHI + PPE,2.59±0.01)混合的粗化石榴果皮提取物涂料对体重损失百分比没有显着影响,与壳聚糖(CHI,2.58±0.01)相比,但与对照组的涂层有显着差异(2.93±0.001)。然而,用粗化石榴果皮提取物与壳聚糖(CHI + PPE)混合的涂料黄瓜倾向于增加成熟的量比壳聚糖和对照组涂层的成熟量更大(p <0.05)。与对照组相比,仅壳壳涂层就无法延迟黄瓜水果的变质。然而,发现涂有粗化石榴果皮提取物与壳聚糖混合的黄瓜水果比用壳聚糖和对照涂层的壳聚糖更宠坏(p <0.05)。关键字:黄瓜,石榴果皮,壳聚糖,涂料
酚和单宁蛋白中度存在,而其他人则以微量的数量存在。在不同的浓度使用中(50、100、200和250),最高的浓度为250mg/mL,显示出甲醇和乙醇提取物的最高抑制区,从而获得了分离株。金黄色葡萄球菌和大肠杆菌的最低抑制浓度和最小杀菌浓度值分别为200mg/ml和250mg/ml;而50mg/ml和100mg/ml的白色念珠菌则用于白色念珠菌。关键词:浓度,植物化学,易感性,治疗。引言抗菌耐药性可以描述为微生物抵抗抗微生物的作用的能力,抗微生物的作用是通过连续接触它们的。突变应变的抗性水平因抗药性的机制而变化很大(Hughes and Andersson,2017)。植物产生多种二级代谢产物,其中许多具有与某些与感染有关的致病微生物的抗菌活性。这些化合物中的某些具有活性形式的健康植物中存在的成分,它们在广泛的感染剂中引起化学预防和化学治疗特性(Oncho等人。,2021)。植物化学物质是天然发生在植物中的化合物(植物意思是“植物”在希腊语中)。有些人负责颜色和其他有机特性,例如蓝莓的深紫色和大蒜的气味。多药耐药病原体的持续演变是全球临床问题。植物化学物质可能具有生物学意义,例如类胡萝卜素或类黄酮,但并未确定为必需营养素。不当使用抗菌药物刺激了遗传修饰的出现,这有助于规避药物的作用机理。因此,抗性菌株的扩展会导致公共停止,因为它导致了需要困难治疗的传染病(Hughes and Anderson,2017; Pereira等,2023)。这导致了来自各种来源的新抗菌物质的搜索和研究增加(Kenneth等,2017)。使用植物药物和草药对治疗具有积极影响,这代表了一种有希望的替代方案,因为许多微生物已经对合成药物产生了抗性(Adamczak等,2019; Pereira等,2023)。材料和方法研究样品的收集区域收集guajava的新鲜叶子是从尼日利亚夸瓦州立大学的化合物Shao中获得的。叶子被带到伊洛林大学植物标本室,植物生物学系进行识别和代金券编号。将叶子用水冲洗,空气在实验室长凳上的室温下干燥至酥脆。干燥的叶子使用电搅拌器将其磨成粉状形式,并存放在封闭的容器中。在尼日利亚夸拉州立大学的Al-Hikmah University Ilorin收集并鉴定了测试生物的鉴定和维护微生物分离株。生物是金黄色葡萄球菌,大肠杆菌和白色念珠菌。在37 o C处的细菌分离株的营养琼脂和27 o C的真菌分离物的马铃薯葡萄糖琼脂。
皮肤微生物群的不平衡的特征是相位微生物的病原体数量增加。从皮肤菌群收集开始,这项工作的目的是评估石榴(Punica Granatum L.)果皮提取物(PPE)在恢复皮肤微生物群在葡萄球菌spp上作用的可能作用。PPE,并分析植物化学组成和抗菌活性。对PPE抗菌作用进行了针对GR +,GR-细菌和酵母参考菌株的评估,并针对主要皮肤微生物群测试了最有效的提取物。PPE显示出最佳的抗菌作用,麦克风范围为1至128 mg/ml;主要的活性化合物是儿茶素,槲皮素,香草酸和长石酸。对s的DME抗粘附效应中的PPE进行了检查。epider- midis and s。金黄色葡萄球菌和双种物种生物膜通过生物量定量和CFU/ML确定形成。通过使用体内模型中的梅洛尼亚菌(Galleria Mellonella lar-vae)评估提取物毒性。提取物在4和8 mg/ml的s中表现出显着的抗粘附活性,具有特定于S的特定物种作用。表皮和s。金黄色葡萄球菌和双物种生物膜。ppe可以代表可持抗性的无毒层,以特定于物种特异性的方式影响葡萄球菌皮肤定植。这项工作的创新是用食物浪费以平衡皮肤微生物群的。
受损的肝能代谢和脂质沉积可能是导致与高果糖消耗有关的负产量。过度刺激糖酵解和糖异生途径,脂肪酸氧化途径的降低似乎是这些障碍的基础。3然而,众所周知,持续糖消耗的许多病理学作用与胃肠道(GIT)水平发生的事件有关。4我们以前的体内研究说明了饮食中果糖对糖化含量的有害影响对糖化性胁迫,以及对蛋白质消化的受损及其对微生物群和遗传性共生分类的负面影响。5多余的果糖征收促进的糖氧化反应(或促乙二醇化状态)也可能有可能有助于促成与杂种相关的代谢障碍,但其他因素是†电子补充信息(ESI)。参见doi:https://doi.org/ 10.1039/d4fo00688g
石榴种子(PS)是源自石榴果的干种子,约占果实总重量的20%,是石榴汁提取的副产品。这些种子在Uyghurs和藏族文化中具有传统医学的重要性,其中包括传统中医中的各种临床应用。这些应用包括胃冷和酸度的治疗,腹部扩张,肝脏和胆囊发烧以及小儿肠炎。ps展示了诸如胃部张力,Qi调节,镇痛和抗炎性效应之类的特性。广泛的研究强调了PS在各种植物化合物和代谢产物中的丰富性,特别是不饱和脂肪酸(尤其是亚麻酸酸和亚油酸),酚类化合物生育酚,蛋白质,蛋白质和挥发油。值得注意的是,在PS中发现的这些生物活性化合物(PA)中,在预防和治疗癌症,糖尿病,肥胖和其他疾病中表现出了潜力。尽管关于石榴作为植物实体的大量文献,但专门针对PS的化学组成和药理作用的全面综述仍然难以捉摸。因此,本综述旨在巩固有关PS的药物特性的知识,总结其化学成分,传统用途和药理作用在治疗各种疾病中,从而为PS在药理学领域的发展和应用奠定了基础。
摘要:富含生物活性化合物的番石榴叶提取物提供了许多适合整合到美容配方中的治疗益处。本评论探讨了番石榴提取物在化妆品应用中的多方面潜力。番石榴叶(P. guajava L.)包含许多生物活性化合物,在保持健康皮肤方面起着重要作用。The leaves of the guava plant have been studied for their health benefits which are attributed to their plethora of phytochemicals such as quercetin, avicularia, apigenin, guaijaverin, kaempferol, hyperin, myricetin, catechin, epicatechin, chlorogenic acid, gallic acid, epigallocatechin gallate, and caffeic acid.在这篇综述中,我们首先概述了化妆品中草药成分的好处以及番石榴叶提取物的健康益处。我们提供有关皮肤护理产品中番石榴叶提取物的抗氧化剂,抗菌和治疗痤疮的潜在影响的信息。然后,我们采用番石榴叶提取物在口腔护理产品中的作用,以进行抗菌活性,防止口腔疾病和护发产品消除头皮屑,减少头发掉落等。
然而,在实现基于LLZ的ASSB的主要挑战中,具有促进电池操作的属性的阴极/LLZ界面形成,例如低界面电阻和良好的接触。因此,LLZ的densi cation采用了高于1000°C的温度下的犯罪策略,以增强其对LI金属的离子电导率和稳定性。然而,这种高温犯罪不可避免地会导致形成高电阻的电极/LLZ相间,从而导致电池较差。12,13可以通过两条路线形成阴极/LLZ接口。在第一个路径中,涉及将阴极层涂在烧结的LLZ磁盘上,LLZ在升高的温度下呈密密度密度,然后使用诸如筛网印刷和浸入等方法与阴极层涂层,并且所得的PORTODE/LLZ系统是在低温到
工业工程系,巴布尔·诺什瓦尼(Babol Noshirvani)技术大学,巴布尔,伊朗摘要农业活动对环境产生了不利影响,通过排放温室气体并消耗大量淡水。此外,水果构成用于平衡饮食的农产品的重要组成部分。尤其是石榴是不同文化的人们使用的最常用产品之一。在这项研究中,开发了多个客观的数学模型,以通过专注于选择最佳培养过程并确定石榴供应链设施之间的最佳材料流来平衡可持续性维度。提议的模型最大程度地利用了由于耕种过程选择和建立植物而创造的就业机会的总利润和数量。它还通过最大程度地减少石榴植物中的肥料,农药和含水量来解决环境影响。该模型还考虑了石榴果皮和种子的反向流,以重新接收这些产品的价值,通常称为废物。伊朗马桑达省的一个真实案件被考虑用于验证开发的模型。最后,对问题的影响因素进行了全面的敏感性分析,并提出了管理意义。关键字:可持续性,农业供应链,前向和反向流动,石榴,耕种过程,水消耗1。这些问题强调了在农业部门的可持续性维度之间建立平衡的重要性。引言发达国家和发展中国家最重要的经济部门之一是农业,它影响了粮食供应,健康和政治问题,除了经济以外[1]。此外,由于其独特的特征,包括食品质量的重要性以及价格,气候和对各种食物的需求的变化,农业供应链引起了从业者和研究人员的注意[2]。此外,由于农业在经济,社会和环境中的重要作用,除了政府法规和环境意识之外,考虑到可持续性维度的有效供应链网络的设计和应用在过去几年中引起了研究人员的关注。农业部门对环境产生负面影响,因为据报道它是淡水最大的消费者,也是世界上第二大温室气体的发射极。农业在全球温室排放中的份额以及顶级农业国家的可再生淡水资源的趋势,强调了上述考虑农业环境方面的原因[3]。此外,农业中农药和肥料的大量消费会导致温室气体的排放,例如一氧化二氮和甲烷,包括空气,土壤和水,包括空气,土壤和水,污染自然资源并威胁人口健康的各种媒体。此外,材料的反向流将导致从通常称为废物的材料中获得额外的值[4]。相反,农业也对社会和经济产生了积极影响,提供了基本和重要的收入,就业和食品的来源,尤其是对于世界上的农村人口。在某些行业,根据产品的特征,收集的废物可以输入