吲哚乙酸(IAA)的产生是根际细菌的主要资产,可刺激和增强植物的生长。目前的工作涉及分离和鉴定从石榴酸盐,番石榴和Amla农场收集的根际土壤中产生细菌的吲哚乙酸。在十种吲哚乙酸产生分离株中,选择了两个作为有效的生产者。光谱分析,这表明在37°C下孵育72小时后,分离的细菌在孵育72小时后产生了最大浓度IAA。使用标准IAA曲线测量浓度,并通过AA2获得最大浓度。随后,通过POT分析测试了对植物生长的影响。用AA2分离物进行发芽的豌豆种子的体外处理表现出比对照更好的结果。总而言之,研究表明,IAA产生细菌是促进植物生长的有效接种剂。
植物学的描述和识别,无花果,贾蒙,石榴,卡里莎,帕尔萨,木苹果,印度樱桃,塔玛琳德,塔玛琳,阿恩拉,贝尔和安娜娜,描述和识别基于上述花朵和水果形态的品种的描述和鉴定,grapes,mango,mango,mango,guava and guava and guava and citrus和cit。选择地点和种植系统。香蕉吸盘的预处理,在香蕉和木瓜中的性形式中静止不动。在水果生产中使用塑料。肥料和肥料的施用,包括水果作物中的生物肥料。在芒果,香蕉和葡萄中制备和应用生长调节剂。种子在木瓜中产生,乳胶提取和粗木瓜制备。成熟的水果,分级和包装,热带和亚热带水果的生产经济学。印度干旱和半干旱地区的映射。参观商业果园和疾病的诊断。
生物技术在全球范围内被视为直接应用水果生产的重要工具之一。它对全球园艺部门具有强大而积极的影响。生物技术包括植物组织培养(PTC),应用微生物学和应用分子生物学,促进了用改良的食物,饲料,纤维,纤维,维生素,矿物质和燃料生产作物的作物。PTC的技术从“概念”转换为“商业化”。作为一个行业,PTC在印度不再是一个新生的行业。随着多向增长和数百万美元的翻转而蓬勃发展。几种农作物植物经常繁殖(香蕉,草莓,石榴,梨,桑树和pepino等)通过组织培养技术,在国内和国际上进行近三十年的交易。以来,PTC是许多农作物中大规模生产的强大技术,它已成为托儿所和农业行业的重要工具。PTC技术负责实现我国的第二次绿色革命。在评论文章中讨论了印度PTC行业对市场不断增长的需求,其业务潜力以及该行业面临的挑战的影响。
与班加罗尔的主要站以及布巴内斯瓦尔和切塔利的两个区域中心与印度印度园艺研究所,在过去的54年中一直努力对参与园艺部门的各种利益相关者产生强大的影响。该研究所已经确定了18种有希望的水果,蔬菜和花朵作物品种,以及与作物管理,诊断工具包,昆虫诱饵,农用机械和增值相关的14种技术。释放了五种高产的辣椒杂种,具有对CHLCV的抵抗力和四个可改善农民收入的类胡萝卜素的混合动力,这是显着的成就。Arka Herbiwash,用于水果和蔬菜的太阳能自动售货货车以及即可获得的蘑菇,以及芒果,菠萝和石榴的益生菌果汁,是当前大流行状况的最相关的技术。Arka Herbiwash是一种环保配方,能够去除80-100%的表面农药残基和微生物。太阳能自动售货机在将产品从生产者转移到最低收获后损失的消费者方面变得方便。
康普茶是一种用茶叶制成的发酵饮料,尽管最近其他替代品被视为替代品,例如水果。使用不同类型的水果可能会影响基于水果的康普茶的特征。本研究通过随机块设计研究了基于水果的康普茶的物理化学和微生物特征,其类型(红色的果实,苹果,蛇,草莓,草莓,葡萄,梨,红番石榴和柑橘)是因素。分析了生产的康普茶饮料,并比较pH,总糖,总酚类化合物,总类黄酮,抗氧化活性和总微生物。统计检验(例如方差分析(ANOVA)和最小显着性不同(LSD)(α= 5%))。结果表明,康普茶的物理化学和微生物学特征与蛇果实康普茶的果实类型显着相关,显示了每个特征的最佳结果:总乙酸细菌和酵母菌的总酵母和酵母1.53×10 9 cfu/ml,pH,pH的总糖为3.07,总糖为2.41%。 DPPH清除活性为5.46μg/mL的1.75 mg QE/mL和IC 50。发酵的基于水果的康普班被认为是传统康普茶的健康替代品,因为它们提供了丰富的营养来源,从而增强了人类的福祉。
生物塑料是生物学衍生的可生物降解聚合物。食物浪费是可持续发展的挑战,因为它可以增加温室气体排放和其他与环境有关的问题。同时,塑料废物对环境污染产生了重大贡献。由于常规塑料引起的环境问题越来越大,“环保”材料的开发引起了广泛的兴趣。众所周知,水果废物在水果加工和制造过程中会增加。本研究旨在探索水果废物作为生物塑料材料的潜力,作为传统塑料的环保替代品。大多数水果废物在包含淀粉,纤维素,果胶和其他生物聚合物时具有生物塑料的潜力。一些水果废物是由水果加工产业产生的,包括香蕉皮,菠萝果皮,榴莲种子,菠萝蜜种子,鳄梨种子,橙皮,橙色果皮,菠萝蜜花生,石榴果皮和火龙果皮等。从水果废物中生产生物塑料的生产提供了间接解决两个问题的潜力,即减少塑料废物和水果废物,同时促进环境可持续性。为了克服挑战并开发可行的方法来生产基于生物的塑料,实际上有必要加强该领域的创新和研究。这种环保战略可以减少我们对化石燃料制成的常规聚合物的依赖,并带我们进入更可持续的未来。
摘要 随着成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 (Cas) 系统的出现,植物基因组编辑进入了对任何感兴趣的基因进行稳健而精确编辑的新时代。各种 CRISPR/Cas 工具包的开发使新的基因组编辑结果成为可能,这些结果不仅可以针对插入/缺失突变,还可以实现碱基编辑和主要编辑。CRISPR/Cas 工具包的应用迅速促进了经济重要物种的育种和作物改良。CRISPR/Cas 工具包还已应用于多种树种,包括苹果、竹子、大麻科、木薯、柑橘、可可树、咖啡树、葡萄树、猕猴桃、梨、石榴、杨树、拉坦乔伊特树和橡胶树。对这些物种的编辑应用已导致与生长、次生代谢以及抗逆和抗病性相关的关键基因的重大发现。然而,目前对树种的研究大多只涉及编辑技术的初步优化,对基于CRISPR/Cas的树种编辑技术进行更深入的研究,有望迅速加速树种育种和性状改良。此外,树种基因组编辑仍然主要依赖于基于Cas9的插入/缺失突变和农杆菌介导的稳定转化。瞬时转化是无转基因基因组编辑的首选,但在树种中效率通常很低,大大限制了其潜在应用。本文总结了使用CRISPR/Cas系统进行树种基因组编辑的现状,并讨论了阻碍CRISPR/Cas工具包有效应用于树种基因组编辑的局限性以及未来的前景。
果汁中含有必需的养分,矿物质,抗氧化剂和维生素,可用于整体健康。但是,与水果和水果产物有关的食物传播疾病正在增加。因此,这项研究的主要目的是评估瑟拉维镇消费者可用的新鲜果汁的细菌学质量。该研究是从2024年5月至2024年9月进行的。共有20个样品购自自助餐厅,餐馆和超市,其中包括20种新鲜果汁样品5苹果,石榴,芒果和菠萝,而总样品中。此外,还进行了病原体和抗菌敏感性测试的检测。所有新鲜果汁样品均在2.95±0.52-5.91±0.52、0.30±0.10-4.65±0.44和1.00±0.15-2.86±0.33 log 10 cfu/ml之间捕获TVC,TCC和TSC携带。在这项研究中,对于所有新鲜的果汁样品,检测到大肠杆菌,沙门氏菌和金黄色葡萄球菌的患病率均更加主导。大肠杆菌,沙门氏菌分离株和金黄色葡萄球菌的抗生素敏感性测试显示出对生物疗养剂的完全抗性(100%)(姜,蜂蜜和乳酸菌(实验室)。一般而言,这项研究,尤其是与海湾标准相比,新鲜果汁样品中发现的细菌载荷水平不令人满意。这会给社区带来健康问题,并可能导致食源性爆发。因此,使用的水质优质;与洗涤量相关的卫生条件,新鲜果汁制备过程中良好的个人和家庭卫生可以提高成品的细菌质量和安全性。
上清液测量并表示为非单宁酚类干物质的含量。从上述结果中,样品的单宁含量计算如下如下(%)=总酚类(%) - 非单宁酚类(%)确定总类黄酮含量为0.5 ml的等分试样(10mg-12ml)稀释的样品溶液的等分试样(10mg-12ml)稀释的样品溶液与蒸馏水的溶液混合了2ml,并随后将水与0.15 ml溶解了5%。6分钟后,加入0.15 ml的10%ALCL 3溶剂素,并允许6分钟,然后将2ml的4%NaOH溶液添加到混合物中,并彻底混合并允许静置15分钟。在510nm的水毛坯下确定混合物的吸光度。结果表示为提取物[8]的mg re(rutin当量)g -1。结果和讨论,确定并在表中确定了乙醇乙醇提取物的总生物碱,总酚类,总霉菌和单宁含量。总生物碱含量记录为13.6 mg 100g -1。总酚类和单宁含量表示为单宁酸等效,总黄酮为鲁丁素等效。选定的植物样品显示了总酚类的72.1 mg tae g -1,单宁53.5 mg tae g -1和总黄酮的24.9 mg re g -1。药用植物的药物显示出简单,有效,没有副作用的额外优势,并提供了广泛的活性,重点是慢性和退化性疾病的预防作用(Chin等,2006)。药用植物具有称为植物化学化学的化学取代,可对人体产生各种生理作用。药用植物是传统药物,现代药物,营养食品,食品补充剂,FLOK药物,药物中间体和化学实体的最丰富的生物资源(Ncube等,2008; Nirmala eta eta eta al。,2011 A,b)。植物化学筛查是发现新药的重要一步,因为它为临床意义的植物提取物提供了有关特定原发性和二级代谢的信息。植物化学物质用于预防和治疗糖尿病,癌症,心脏病和高血压(Waltnerlaw等,2002)。几种药用植物的治疗作用归因于存在酚类化合物,例如类黄酮,酚酸,原腺苷,二萜和单宁(Pourmorad等,2006)。在本研究中,拟杆菌的乙醇提取物的定性植物化学分析揭示了生物碱,糖苷,类黄酮,皂苷,苯酚和单宁。乙醇提取物中上述化合物的阳性反应可能是由于有机溶剂中植物血管菌的溶解能力所致。早些时候,在Strumpfia Maritima(Hsu等,1981),Uncaria物种(Heitzman等,2005),Mitracarpusscaber(Abere等,2007)和Teucrium stocksianum(Rahim等人,2012年)进行了类似的研究。天然产品在各种疾病的药物开发中发挥了重要作用。直到1990年的科学家们认为,普拉特生产的大多数化合物都是无用的废物。这些废物化合物称为二级代谢产物。,但后来发现这些化合物可能会执行大量功能。这些化合物中的许多不能在商业基础上经济合成。次级代谢产物具有复杂的立体结构,并具有许多手性中心,这对于各种生物活性至关重要[9]。来自天然来源的二级代谢产物是药物开发的好产品,因为在生活系统中详细阐述,它们可以看出与药物更相似,并且比合成药物表现出更多的生物友好性[10]。植物会产生各种生物活性分子,使其成为多种类型的药物的丰富来源。植物带有天然产品表现出药理学和生物学活动,并在威胁生命的条件下起重要作用[11]。类黄酮,据报道会发挥多种生物学作用,包括抗炎,抗剥离,抗过敏性,抗病毒和抗癌性活性[12,13]。单宁已经报道了石榴,tambolan和番石榴的叶子,并且在抗diarhoeal和抗甲状腺漏剂制剂中使用了药物rannins [14,15]。皂苷是类固醇的糖苷,是植物中发现的类固醇生物碱,尤其是在植物皮中,它们形成蜡状保护涂层。它们可用于降低胆固醇,作为抗氧化剂和抗炎药。
doi:https://doi.org/10.22271/j.ento.2023.v11.i6a.9261抽象的植物植物 - 寄生虫线虫是全球12.3%(1570亿美元)的收益率损失最高的原因,全球和21.3%(158亿美元)(158亿美元)。合成nematicides对环境和公共卫生的不利影响促使对管理线虫的非化学方法进行了重新评估。一种这样的方法是生物耗尽,其中,新鲜的植物生物量被掺入土壤中,并用聚乙烯覆盖了两到三周,以抑制土壤传播的害虫和病原体。生物植物的机制是由于葡萄糖酸盐水的水解释放,葡萄糖酸的水解释放,葡萄糖醇的水解属于铜绿,漫画科和卡帕拉辛的植物中。非包质植物的挥发性线虫拮抗化合物的产生扩大了生物量的范围。这些化合物抑制线虫运动,削弱宿主的发现能力,也可能引起卵巢效应。生物肿瘤可有效控制真菌病原体和杂草,改善土壤特性并增强有益的土壤微生物。然而,该方法有一些局限性,例如淡淡的植物生物量在干燥的土壤和较深层的土壤中不可用。在存在生物剂量的情况下,也可以减少有益的昆虫致病线虫。但是,该技术可以成本效率地包括在综合线虫管理中,以获得可接受的线虫管理水平。由于非特异性疾病症状,它们也被称为植物的“看不见的敌人”,并且经常被忽视。关键词:铜氨基科,植物 - 寄生虫线虫,异硫氰酸盐和葡萄糖素酸盐引入植物寄生虫或PPN,是小的显微镜round虫,主要形成与宿主的强制性寄生虫键。由于PPN更适合各种农业气候区域,因此它们在所有种植系统中都是高度多样化和无处不在的。每年,园艺作物的损失百分比约为21.3%,估计为102,0.3979亿卢比(15.8亿美元);估计有198万卢比的50,2224.98亿卢比,估计有198.98亿卢比的198万卢比,造成了十九种园艺作物(香蕉,柑橘,葡萄,瓜瓦,木瓜,木瓜,石榴,苦瓜,胡萝卜,辣椒,辣椒,辣椒,番茄,番茄,番茄,奶油,番茄和土豆)的损失。,如果是十种田间作物(玉米,大米,鹰嘴豆,蓖麻,小麦,黑克,绿色克,葵花籽,黄麻和花生),则为卢比。51,8181万(Kumar等,2020)[17]。 政府法规由于对环境的有害影响而逐渐消除了合成化学物质的使用(Warnock等,2017)[34]。 由于各个国家 /地区的州和中央层面的繁琐注册标准,通过熏蒸或非肿胀方法的线虫管理正在不断变化。 因此,有效管理对于确保作物生产和最大收益至关重要。 使用对植物寄生线虫对植物寄生线虫的生物摄影剂就是这样的策略。 在17世纪初,观察到葡萄糖醇(GSL)和异硫氰酸酯(ITC)的独特性能。 GSL和ITC是生物量度中的关键活性化合物。51,8181万(Kumar等,2020)[17]。政府法规由于对环境的有害影响而逐渐消除了合成化学物质的使用(Warnock等,2017)[34]。由于各个国家 /地区的州和中央层面的繁琐注册标准,通过熏蒸或非肿胀方法的线虫管理正在不断变化。因此,有效管理对于确保作物生产和最大收益至关重要。使用对植物寄生线虫对植物寄生线虫的生物摄影剂就是这样的策略。在17世纪初,观察到葡萄糖醇(GSL)和异硫氰酸酯(ITC)的独特性能。GSL和ITC是生物量度中的关键活性化合物。GSL和ITC是生物量度中的关键活性化合物。生物耗尽生物量的历史是将新鲜植物生物量纳入土壤的过程,该过程通过释放几种化学物质来破坏土壤传播的病原体和害虫(Kirkegaard等,1993)[15]。有机物生物降解期间释放的挥发性化合物的熏蒸作用抑制了植物病原体(Buena等,2007)[6]。