Bw 2024 的 BSTFL 页面概览 页面概览 Bw 2024 的 BSTFL 表格 NATO 代码 Bw 代码 供应商品名称 表格 NATO 代码 Bw 代码 供应商品名称 表格 1a- 1 F-18 FY0010 燃料,汽油,飞机 表格 2b-18 不含 OY1255 白油,技术 表格 1a- 2 F-34 FY0015 燃料,涡轮,飞机 表格 3a- 1 G-353 GY3025 润滑脂,二硫化钼 表格 1a- 3 F-35 FY0020 燃料,涡轮,飞机 表格 3a- 2 G-354 GY3030 润滑脂,飞机和仪表 表格 1a- 4 F-44 FY0025 燃料,涡轮,飞机 表格 3a- 3 G-355 GY3035 润滑脂,石墨化 片 1a- 5 F-54 FY0035 燃料,柴油, 片 3a- 4 G-363 GY3040 润滑脂,锥形阀 片 1a- 6 F-58 FY0045 石油 片 3a- 5 G-372 GY3045 润滑脂,滚动轴承 片 1a- 7 F-63 FY0090 燃料,柴油,(煤油基) 片 3a- 6 G-394 GY3055 润滑脂,飞机 片 1a- 8 F-67 FY0065 燃料,汽油,机动车 片 3a- 7 G-395 GY3060 润滑脂,飞机 片 1a- 9 F-75 FY0050 燃料,柴油, 片 3a- 8 G-397 GY3070 润滑脂,飞机和仪表 片 1a-10 F-76 FY0085 燃料,柴油, 页 3a- 9 G-399 GY3075 润滑脂,飞机和仪器 页 1b- 1 无 FY0060 燃料,柴油, 页 3a-10 G-421 GY3020 润滑脂,滚动轴承 页 1b- 2 无 FY0080 燃料,柴油,(MGO DMA) 页 3a-11 G-460 GY3090 润滑脂,耐海水 页 2a- 1 O-133 OY1060 润滑油,矿物,涡轮发动机 页 3b- 1 无 GY3000 润滑脂,一般用途 页 2a- 2 O-135 OY1065 润滑油,矿物,涡轮发动机 页 3b- 2 无 GY3005 润滑脂,PTFE 页 2a- 3 O-138 OY1070润滑油,矿物,涡轮发动机 页 3b- 3 无 GY3010 润滑脂,航空 页 2a- 4 O-147 OY1075 润滑油,仪器 页 3b- 4 无 GY3015 润滑脂,滚动轴承,耐海水 页 2a- 5 O-148 OY1080 润滑油,合成,涡轮发动机 页 3b- 5 无 GY3095 润滑脂,滚动轴承,可生物降解 页 2a- 6 O-153 OY1090 润滑油,齿轮,(直升机) 页 3b- 6 无 GY3130 润滑脂(1),机动车辆和火炮设备 页 2a- 7 O-155 OY1095 润滑油,齿轮,(直升机) 页 4a- 1 H-515 HY5010 液压油,石油基 页 2a- 8 O-156 OY1100 润滑油,合成,涡轮发动机 片 4a- 2 H-522 HY5130 液压油,酯基 片 2a- 9 O-158 OY1110 润滑油,半液体 片 4a- 3 H-524 HY5135 液压油,酯基 片 2a-10 O-160 OY1115 润滑油,合成,涡轮发动机 片 4a- 4 H-537 HY5020 液压油,阻燃 片 2a-11 O-186 OY1013 润滑油,齿轮,(SAE 75W) 片 4a- 5 H-538 HY5105 液压油,阻燃 片 2a-12 O-204 OY1130 润滑油,半流动纸4a-6 H-540 HY5025液压液,基于石油的表2A-13 O-226 O-226 OY1140润滑油,齿轮,(SAE 80W-90)4A-7A-7 H-542 40)4a-8 H-544 HY5035液压液,阻燃纸2a-15 O-262 OY-262 OY1155润滑油,齿轮,(EP,ISO VG 100)4A-9 H-574 HY5110 HY5110 HY5110液压流体,基于凡士盘2A-16 O-26 O-278 OYY11160 LUBRICATION OIL(SAE)ORRICATION(SAE1160)。页 4a-10 H-575 HY5045 液压油,石油基 页 2a-17 O-1177 OY1170 润滑油,内燃机,二冲程 页 4b- 1 无 HY5005 液压油,管式反冲制动器 页 2a-18 O-1178 OY1175 润滑油,内燃机 页 4b- 2 无 HY5065 液压油,石油基,HLP ISO VG 68 页 2a-19 O-1180 OY1260 润滑油,内燃机,长寿命 页 4b- 3 无 HY5070 液压油,酯基 页 2b- 1 无 OY1000 润滑油,复合材料 页 4b- 4 无 HY5115 液压油,含水,难以清除。页 2b- 2 无 OY1005 润滑油,齿轮,(SAE 80W-90) 页 4b- 5 无 HY5120 液压油,含水,难以去除,ISO 页 2b- 3 无 OY1010 润滑油,齿轮,(SAE 75W) 页 5a- 1 C-620 CY6020 腐蚀抑制剂 (K2) 页 2b- 4 无 OY1015 润滑油,齿轮,OEP 215 页 5a- 2 C-630 CY6025 腐蚀抑制剂,乳化油 页 2b- 5 无 OY1020 润滑油,齿轮,(EP,ISO VG 320) 页 5a- 3 C-632 CY6030 腐蚀抑制剂 页 2b- 6 无 OY1025 润滑油,齿轮, (EP, ISO VG 460) 页 5a- 4 C-634 CY6035 腐蚀抑制剂 页 2b- 7 无 OY1030 润滑油,仪器 (FS) 页 5a- 5 C-635 CY6040 液压油,石油基 页 2b- 8 无 OY1180 润滑油,锯链 页 5a- 6 C-638 CY6070 腐蚀抑制剂,发动机 页 2b- 9 无 OY1195 润滑油,齿轮, (EP, ISO VG 150) 页 5b- 1 无 CY6010 腐蚀抑制剂 (K 19) 页 2b-10 无 OY1200 润滑油,冷却液压缩机, (I 型,ISO VG 页 5b- 2 无 CY6050 润滑油,内燃机 (SAE 30) 页 2b-11 无OY1205 润滑油,冷却液压缩机,(II 型,ISO VG 页 5b- 3 无 CY6075 腐蚀抑制剂(绳) 页 2b-12 无 OY1210 润滑油,冷却液压缩机,(III 型,ISO VG 页 6a- 1 S-720 SY7090 防卡剂 页 2b-13 无 OY1215 润滑油,冷却液压缩机,(IV 型,ISO VG 页 6a- 2 S-722 SY7095 防卡剂 页 2b-14 无 OY1220 润滑油,空气压缩机,(I 型,ISO VG 46) 页 6a- 3 S-732 SY7100 石墨,粉末 页 2b-15 无 OY1225 润滑油,空气压缩机,(II 型,ISO VG 100) 页 6a- 4 S-736 SY7110 电气绝缘化合物(有机硅剂) 片 2b-16 无 OY1230 润滑油,空气压缩机,(III 型,ISO VG 150) 表 6a- 5 S-737 SY7115 异丙醇,技术表 2b-17 不含 OY1250 润滑油,齿轮 (EP, ISO VG 220) 表 6a- 6 S-738 SY7120 变性乙醇
Bw 2024 的 BSTFL 页面概览 页面概览 Bw 2024 的 BSTFL 表格 NATO 代码 Bw 代码 供应商品名称 表格 NATO 代码 Bw 代码 供应商品名称 表格 1a- 1 F-18 FY0010 燃料,汽油,飞机 表格 2b-18 不含 OY1255 白油,技术 表格 1a- 2 F-34 FY0015 燃料,涡轮,飞机 表格 3a- 1 G-353 GY3025 润滑脂,二硫化钼 表格 1a- 3 F-35 FY0020 燃料,涡轮,飞机 表格 3a- 2 G-354 GY3030 润滑脂,飞机和仪表 表格 1a- 4 F-44 FY0025 燃料,涡轮,飞机 表格 3a- 3 G-355 GY3035 润滑脂,石墨化 片 1a- 5 F-54 FY0035 燃料,柴油, 片 3a- 4 G-363 GY3040 润滑脂,锥形阀 片 1a- 6 F-58 FY0045 石油 片 3a- 5 G-372 GY3045 润滑脂,滚动轴承 片 1a- 7 F-63 FY0090 燃料,柴油,(煤油基) 片 3a- 6 G-394 GY3055 润滑脂,飞机 片 1a- 8 F-67 FY0065 燃料,汽油,机动车 片 3a- 7 G-395 GY3060 润滑脂,飞机 片 1a- 9 F-75 FY0050 燃料,柴油, 片 3a- 8 G-397 GY3070 润滑脂,飞机和仪表 片 1a-10 F-76 FY0085 燃料,柴油, 页 3a- 9 G-399 GY3075 润滑脂,飞机和仪器 页 1b- 1 无 FY0060 燃料,柴油, 页 3a-10 G-421 GY3020 润滑脂,滚动轴承 页 1b- 2 无 FY0080 燃料,柴油,(MGO DMA) 页 3a-11 G-460 GY3090 润滑脂,耐海水 页 2a- 1 O-133 OY1060 润滑油,矿物,涡轮发动机 页 3b- 1 无 GY3000 润滑脂,一般用途 页 2a- 2 O-135 OY1065 润滑油,矿物,涡轮发动机 页 3b- 2 无 GY3005 润滑脂,PTFE 页 2a- 3 O-138 OY1070润滑油,矿物,涡轮发动机 页 3b- 3 无 GY3010 润滑脂,航空 页 2a- 4 O-147 OY1075 润滑油,仪器 页 3b- 4 无 GY3015 润滑脂,滚动轴承,耐海水 页 2a- 5 O-148 OY1080 润滑油,合成,涡轮发动机 页 3b- 5 无 GY3095 润滑脂,滚动轴承,可生物降解 页 2a- 6 O-153 OY1090 润滑油,齿轮,(直升机) 页 3b- 6 无 GY3130 润滑脂(1),机动车辆和火炮设备 页 2a- 7 O-155 OY1095 润滑油,齿轮,(直升机) 页 4a- 1 H-515 HY5010 液压油,石油基 页 2a- 8 O-156 OY1100 润滑油,合成,涡轮发动机 片 4a- 2 H-522 HY5130 液压油,酯基 片 2a- 9 O-158 OY1110 润滑油,半液体 片 4a- 3 H-524 HY5135 液压油,酯基 片 2a-10 O-160 OY1115 润滑油,合成,涡轮发动机 片 4a- 4 H-537 HY5020 液压油,阻燃 片 2a-11 O-186 OY1013 润滑油,齿轮,(SAE 75W) 片 4a- 5 H-538 HY5105 液压油,阻燃 片 2a-12 O-204 OY1130 润滑油,半流动纸4a-6 H-540 HY5025液压液,基于石油的表2A-13 O-226 O-226 OY1140润滑油,齿轮,(SAE 80W-90)4A-7A-7 H-542 40)4a-8 H-544 HY5035液压液,阻燃纸2a-15 O-262 OY-262 OY1155润滑油,齿轮,(EP,ISO VG 100)4A-9 H-574 HY5110 HY5110 HY5110液压流体,基于凡士盘2A-16 O-26 O-278 OYY11160 LUBRICATION OIL(SAE)ORRICATION(SAE1160)。页 4a-10 H-575 HY5045 液压油,石油基 页 2a-17 O-1177 OY1170 润滑油,内燃机,二冲程 页 4b- 1 无 HY5005 液压油,管式反冲制动器 页 2a-18 O-1178 OY1175 润滑油,内燃机 页 4b- 2 无 HY5065 液压油,石油基,HLP ISO VG 68 页 2a-19 O-1180 OY1260 润滑油,内燃机,长寿命 页 4b- 3 无 HY5070 液压油,酯基 页 2b- 1 无 OY1000 润滑油,复合材料 页 4b- 4 无 HY5115 液压油,含水,难以清除。页 2b- 2 无 OY1005 润滑油,齿轮,(SAE 80W-90) 页 4b- 5 无 HY5120 液压油,含水,难以去除,ISO 页 2b- 3 无 OY1010 润滑油,齿轮,(SAE 75W) 页 5a- 1 C-620 CY6020 腐蚀抑制剂 (K2) 页 2b- 4 无 OY1015 润滑油,齿轮,OEP 215 页 5a- 2 C-630 CY6025 腐蚀抑制剂,乳化油 页 2b- 5 无 OY1020 润滑油,齿轮,(EP,ISO VG 320) 页 5a- 3 C-632 CY6030 腐蚀抑制剂 页 2b- 6 无 OY1025 润滑油,齿轮, (EP, ISO VG 460) 页 5a- 4 C-634 CY6035 腐蚀抑制剂 页 2b- 7 无 OY1030 润滑油,仪器 (FS) 页 5a- 5 C-635 CY6040 液压油,石油基 页 2b- 8 无 OY1180 润滑油,锯链 页 5a- 6 C-638 CY6070 腐蚀抑制剂,发动机 页 2b- 9 无 OY1195 润滑油,齿轮, (EP, ISO VG 150) 页 5b- 1 无 CY6010 腐蚀抑制剂 (K 19) 页 2b-10 无 OY1200 润滑油,冷却液压缩机, (I 型,ISO VG 页 5b- 2 无 CY6050 润滑油,内燃机 (SAE 30) 页 2b-11 无OY1205 润滑油,冷却液压缩机,(II 型,ISO VG 页 5b- 3 无 CY6075 腐蚀抑制剂(绳) 页 2b-12 无 OY1210 润滑油,冷却液压缩机,(III 型,ISO VG 页 6a- 1 S-720 SY7090 防卡剂 页 2b-13 无 OY1215 润滑油,冷却液压缩机,(IV 型,ISO VG 页 6a- 2 S-722 SY7095 防卡剂 页 2b-14 无 OY1220 润滑油,空气压缩机,(I 型,ISO VG 46) 页 6a- 3 S-732 SY7100 石墨,粉末 页 2b-15 无 OY1225 润滑油,空气压缩机,(II 型,ISO VG 100) 页 6a- 4 S-736 SY7110 电气绝缘化合物(有机硅剂) 片 2b-16 无 OY1230 润滑油,空气压缩机,(III 型,ISO VG 150) 表 6a- 5 S-737 SY7115 异丙醇,技术表 2b-17 不含 OY1250 润滑油,齿轮 (EP, ISO VG 220) 表 6a- 6 S-738 SY7120 变性乙醇
份额 )'/) 可靠 45.1 石油基 2,807 1,999 13.8 11.2 柴油燃料 1,206 1,002 5.9 5.6 石油热能 650 305 3.2 1.7 燃气轮机 767 540 3.8 3.0 柴油燃料(混合动力) 16 11 0.1 0.1 动力驳船 19 10 0.1 0.1 燃油燃料 135 117 0.7 0.7 燃油柴油燃料 15 13 0.1 0.1 天然气 3,731 3,281 18.3 18.3 可再生能源 5,063 4,541 24.8 25.4 生物质 175 145 0.9 0.8 生物质 167 142 0.8 0.8 垃圾发电(WTE) 8 3 0.0 0.0 地热 865 714 4.2 4.0 太阳能 1,092 879 5.4 4.9 电表后(BTM) 46 37 0.2 0.2 地面安装 1,036 833 5.1 4.7 屋顶安装太阳能光伏(混合) 0 0 0.0 0.0 地面安装太阳能光伏(混合) 10 9 0.0 0.0 水电 2,578 2,450 1Z6 13.7 蓄水式水电 1,418 1,366 6.9 7.6 抽水蓄能 736 720 3.6 4.0 径流式风电 424 365 2.1 2.0 风电 353 353 1.7 20 陆上风电 353 353 1.7 2.0 海上 I4ind 05 储能系统 (ESS) 总计
一方面,需求和可再生能源(RES)的固有间歇性经常带来诸如微电网内过载或剩余产生之类的挑战。另一方面,电动汽车Ag Gregations(EVA)已获得了极大的关注,作为解决气候变化并成为石油基汽车的可持续替代品的关键策略。然而,微电网中EVA的不协调部署,尤其是面对RES的间歇性质,对微电网系统的安全操作构成了潜在的威胁。为了解决上述问题,这项研究集中于互连一组散射的微电网以创建多生物网络系统。更详细地,通过制定一种能源管理策略来重新配置微电网之间的互连,这些多菌流系统之间的有效交换功率可以促进,从而解决了负载需求的可变性,这是RESS的Sto Chastic生成模式。此外,在可重新配置的微电网结构中同步了EVA的网格到车辆(G2V)和车辆到网格(V2G)概念,以增强模型的灵活性。为了在现实情况下评估模型,还采用了一种基于方案的方法来反映不确定性对模型的影响。以其数学凸度为特征的提议方法允许使用诸如CPLEX之类的有效求解器,从而确保在有限的时间范围内实现可行的全局解决方案。通过在修改后的33个总线测试系统上实现该方法的有效性,该方法以多感细胞系统运行。结果表明,在EVA的存在下,提出的方法是优化可重构多微晶系统的运行的有前途的工具的有效性,从而导致运行成本降低和电压曲线增强。
执行摘要:消费品和工业品脱碳和排毒是应对气候变化的下一个前沿。木材衍生物是最有前途的气候解决方案,可取代许多制成品中的化石燃料基材料,在取代石油基传统建筑产品、塑料包装和有害合成添加剂方面具有巨大的市场机会。缅因州的森林生物产品先进制造技术中心拥有几代人才、创新、基础设施和资本,它们共同为推动美国在 21 世纪循环经济中的技术领导地位提供了强大的引擎:从森林中提取生物构件,对其进行处理以供使用,并从这些组件中制造出环境可持续的产品。这一核心技术领域位于两个 KTFA 的交汇处:(4) 机器人、自动化和先进制造,以及 (10) 先进材料科学。该地区集中在缅因州 95/295 号公路创新走廊沿线,位于波特兰 (波特兰-南波特兰 MSA) 和奥罗诺 (班戈 MSA) 之间。该走廊还包括刘易斯顿-奥本大都会统计区和奥古斯塔-沃特维尔大都会统计区,主要制造资产位于此处,并与北部和西部的工厂社区和萨默塞特和阿鲁斯图克县的广阔森林紧密相连,并与缅因州农村和新英格兰北部的传统制造基地有进一步的联系,为未来生物制品行业的增长提供了广泛的基础设施。
计划安装数量 可靠安装 可靠安装 可靠安装 可靠安装 可靠煤炭 8,792 8,060 44.5 46.3 并网 18,864 16,815 95.5 96.6 石油基 2,357 1,639 11.9 9.4 嵌入式 894 598 4.5 3.4 柴油 940 794 4.8 4.6 总计 19,758 17,413 100.0 100.0 石油热能 650 305 3.3 1.8 能源存储系统 (ESS) 240 240 燃气轮机 767 540 3.9 3.1 电池 ESS 240 240 天然气 3,731 3,281 18.9 18.8 混合 ESS 0 0 可再生能源 4,878 4,432 24.7 25.5 生物质 175 139 0.9 0.8 生物质 167 136 0.8 0.8 垃圾发电 (WTE) 8 3 0.0 0.0 地热 865 769 4.4 4.4 太阳能 960 772 4.9 4.4 电表后 (BTM) 44 35 0.2 0.2 地面安装 916 736 4.6 4.2 水电 2,542 2,416 12.9 13.9 蓄水式水电 1,418 1,366 7.2 7.8 抽水蓄能 736 720 3.7 4.1径流式风电 388 330 2.0 1.9 风能 337 337 1.7 1.9 陆上风电 337 337 1.7 1.9 海上风电 (OSW) 0 0 0.0 0.0 #REF! 总计 19,758 17,413 100.0 100.0 能源存储系统 (ESS) 240 240 电池 ESS 240 240 混合 ESS 0 0
计划安装数量 可靠安装 可靠安装 可靠安装 可靠安装 可靠煤炭 8,942 8,193 44.3 46.2 并网 19,284 17,113 95.5 96.5 石油基 2,354 1,648 11.7 9.3 嵌入式 913 623 4.5 3.5 柴油 937 803 4.6 4.5 总计 20,196 17,736 100.0 100.0 石油热能 650 305 3.2 1.7 能源存储系统 (ESS) 363 341 燃气轮机 767 540 3.8 3.0 电池 ESS 363 341 天然气 3,731 3,281 18.5 18.5 混合 ESS 0 0 可再生能源 5,169 4,614 25.6 26.0 生物质 175 145 0.9 0.8 生物质 167 142 0.8 0.8 垃圾发电 (WTE) 8 3 0.0 0.0 地热 865 714 4.3 4.0 太阳能 1,244 995 6.2 5.6 电表后 (BTM) 46 37 0.2 0.2 地面安装 1,198 958 5.9 5.4 水力发电 2,549 2,423 12.6 13.7 蓄水式水力发电 1,418 1,366 7.0 7.7 抽水蓄能 736 720 3.6 4.1径流式风电 (ROR) 395 338 2.0 1.9 风能 337 337 1.7 1.9 陆上风能 337 337 1.7 1.9 海上风能 (OSW) 0 0 0.0 0.0 #REF! 总计 20,196 17,736 100.0 100.0 能源存储系统 (ESS) 363 341 电池 ESS 363 341 混合 ESS 0 0
目的 睾丸生殖细胞肿瘤 (TGCT) 的病因在很大程度上仍不清楚,但有研究表明职业性溶剂暴露与该病有关。先前分析这些暴露的研究报告了不一致的结果,可能与暴露评估方法有关。本研究旨在调查职业性溶剂暴露对年轻男性患 TGCT 风险的影响。方法 本研究根据法国国家 TESTIS 病例对照研究中 454 名病例和 670 名年龄在 18-45 岁之间的对照者的一生工作经历,研究了职业性溶剂暴露和 TGCT 风险。使用以下方法估算溶剂暴露:(i) 按工作暴露矩阵 (JEM) 分配暴露和 (ii) JEM 结合特定问卷 (SQ) 和专家评估 (EA) 中的自我报告暴露数据。使用条件逻辑回归模型估算优势比 (OR) 和 95% 置信区间 (CI)。结果两种方法(JEM 和 JEM+SQ+EA)均显示 TGCT 与三氯乙烯暴露之间存在一致的关联(暴露与未暴露;JEM=OR 1.80 [95% 置信区间 (CI) 1.12–2.90] 和 JEM+SQ+EA= OR 2.59(95% CI 1.42–4.72)。两种方法还观察到与酮酯和燃料及石油基溶剂的正相关。结论结果表明,某些有机溶剂可能与职业暴露男性的 TGCT 发病机制有关。JEM+SQ+EA 的联合使用似乎可以通过考虑个体暴露差异来限制错误分类,因此,是一种在流行病学研究中评估职业暴露的有效方法。
德国橡胶技术研究所。V.(德国橡胶技术研究所)德国汉诺威* 通讯作者。电子邮件:rungsima.y@tggs.kmutnb.ac.th DOI:10.14416/j.asep.2024.09.004 收到日期:2024 年 5 月 30 日;修订日期:2024 年 7 月 4 日;接受日期:2024 年 8 月 16 日;在线发表日期:2024 年 9 月 5 日 © 2024 曼谷北部国王科技大学。版权所有。摘要天然纤维增强复合材料 (NFRC) 因其环保、价格实惠和优异的机械性能而备受关注。然而,纤维和聚合物基质之间的界面结合不足往往会导致机械和热性能较差。已经开发出各种表面处理方法,包括碱、硅烷和等离子处理,通过改性纤维表面来解决这一问题。这些处理已被证明可以改善界面结合,从而提高天然纤维增强 PA6 复合材料 (NFRC-PA6) 的机械强度和热稳定性。在本研究中,我们应用了这些表面处理并通过机械和热测试评估了它们的影响。结果表明复合材料的性能有了显著改善,尽管优化处理参数和确保均匀性等挑战仍然存在。未来的研究应侧重于克服这些挑战并探索创新处理方法,以进一步推进 NFRC-PA6 复合材料的应用。 关键词:轻型运输、天然纤维增强复合材料 (NFRC)、聚酰胺 6、表面处理 1 简介 在未来几十年内,预计作为生产塑料的原材料的石油和天然气供应将减少,从而导致对可持续和环保企业的需求 [1],[2]。天然材料,如纤维素纤维,被用作复合材料中的天然纤维增强材料,以部分替代石油基聚合物[3]。由于其成本低廉,
» 早在 2011 年 4 月,我们就开始在 CW 网站上发布一份题为“复合树脂价格变动报告”的报告,这是一份树脂基质价格上涨公告的连续清单。这些公告通常由聚酯、乙烯基酯和凝胶涂层等“工业”树脂制造商提交,内容通常如下:“XYZ 公司,欧洲所有不饱和聚酯树脂、乙烯基酯树脂和辅助产品价格上涨 80 欧元/公吨。适用于 2015 年 6 月 8 日或之后发货的所有订单。”每份公告中都包含一份来自制造商的声明,以证明价格上涨的合理性,但并未发布在我们的连续清单中(您可以在 short.compositesworld.com/resinprice 找到该清单)。通常是这样的:“‘我们的主要原材料价格急剧上涨,因此我们别无选择,只能提高产品价格,’ABC 公司销售总监 Joe Smith 解释道。”我想,价格变动总是上涨的,这一点毋庸置疑——在我担任 CW 编辑的 10 年里,我们从未收到过降价公告。此外,自从我们开始撰写这份报告以来,我注意到一个惊人的趋势:价格变动公告往往是一波一波的。也就是说,我会收到一家供应商的新闻稿,宣布涨价;几天后,其他供应商也会发布新闻稿,宣布类似产品的价格也会上涨。如果您花几分钟研究 CW 的“复合树脂价格变动报告”,您可以轻松地发现这种价格变动公告的“聚集”。您会注意到,自 2011 年以来,价格平均每隔一个月左右就会上涨一次。并非每个树脂供应商都如此,但价格上涨的频率有一定的规律性。推动树脂定价的部分原因是原料成本(我们虚构的 Joe Smith 上文中提到的“原材料”),这些原料主要来自石油基产品。因此,随着石油和天然气价格上涨,树脂的价格也会上涨