关于本报告:本报告显示了石溪大学的学位和证书课程。以下所有课程均已获得纽约州立大学 (SUNY) 和纽约州教育部 (NYSED) 的批准。本列表中的课程自 2024 年秋季学期起生效。一些课程可能在非活跃课程中完成。新课程可能会获得批准,但如果在学期期间获得批准,则不会包含在此列表中。有些课程根据课程类型有多个批准代码,但算作一个课程 - 例如:针对不同学分要求(36 或 48)批准的 MBA 课程有多个课程代码,但算作一个 MBA。
摘要。物联网(IoT)几乎将互联网和智能设备集成到家庭自动化,电子保健系统,车辆网络,工业控制和军事应用等域。在这些扇区中,从多个来源收集的感官数据,并通过多个节点进行管理,用于决策过程。确保数据完整性并跟踪数据出处是在如此高度动态的环境下的核心要求,因为数据出处是确保数据可信度的重要工具。由于物联网网络工作中的计算和能源有限,处理此类要求是具有挑战性的。这需要解决一些挑战,例如处理开销,安全出处,带宽消耗和存储效率。在本文中,我们提出了锆石,这是一种新型的零水印方法,以在物联网网络中建立端到端数据可信度。在锆石中,出处信息存储在通过水印的防篡改集中式网络数据库中,在传输前在源节点生成的水印。我们提供了广泛的安全性分析,显示了我们计划针对被动和主动攻击的弹性。我们还将我们的计划与基于绩效指标(例如计算时间,能源利用率和成本分析)的现有作品进行了比较。结果表明,与先前的艺术相比,锆石对几种攻击,轻量级,储存效果和能量利用和带宽消耗效果更好。
Public Works Research Institute, National Research and Development Agency Structure Maintenance Research Center Nishikawa Kazuhiro Sep. 2018 - Mar. 2022 Kanazawa Fumihiko Sep. 2018 - Mar. 2020 Kiriyama Takaharu Sep. 2018 - Bridge Structure Research Group, Structure Maintenance Research Center Hoshikuma Junichi July 2011 - Masahiro Ishida Sep. 2018 - Michio Osumi Sep. 2018 - Mamoru Sawada Sep. 2018 - Mar. 2018 Kamisen Yasushi Sep. 2018 - Mar. 2022 Tanaka Yoshiki Sep. 2018 - Mar. 2019 Oshima Yoshinobu Sep. 2018 - Mar. 2020 Hiroe Akiko Sep. 2018 - Mar. 2020 Morimoto Tomohiro Sep. 2018 - Mar. 2019 Matsumoto Naoshi Sep. 2018 -与上述相同,同一计划的第三年:Masashi Endo,9/2018-3/2010与上述相同,Tsubasa Noda,9/2018-2018-5/2010相同,Toshitaka Suemune,4/2019-2019-3/2020与上述相同IRO NINOMIYA,4/2019-7/2020与上述相同,Takahiro Masuda,4/2019-7/2020与上述相同,Nakaura Shinnosuke Nakaura,4/2019-4/2011与上述相同/2019-4/2022与上述相同,Kohei Eguchi,4/2019-3/2022与上述相同Kenta H31.4 ~ 相同 峰高 R1.5 ~ R2.4 相同 大西贵则 R1.7 ~ R3.9 相同 篠田龙作 R2.4 ~ R4.3 相同 高桥稔 R2.4 ~ 相同 藤木裕二 R2.4 ~ 相同 饭岛翔一 R2.4 ~ 相同 夏堀至 R2.4 ~ 相同 小林匠 R2.4 ~ 相同 岩谷勇太 R2.7 ~ 相同 菅原达也 R2.7 ~ 相同 行堂慎也 R2.8 ~ R4.7 相同 竹内绫 R3.4 ~ 相同 佐藤淳也 R3.4 ~ 相同 大西达也 R3.10 ~ 相同 藤田智宏 R4.4 ~ 相同西原和彦 2002 年 4 月 - 2010 年 3 月 同一技术推进本部 先进技术组 新田京二 2018 年 9 月 - 2020 年 3 月 同一技术 森川博国 2009 年 4 月 - 2022 年 3 月 同一技术 田中洋一 2018 年 9 月 - 2019 年 3 月 同一技术 服部达也 2019 年 4 月 - 2021 年 3 月 同一技术 茂木雅晴 2011 年 4 月 - 2022 年 3 月 同一技术 下川光晴 2018 年 10 月 - 2019 年 3 月 同一技术 榎本真美 2018 年 10 月 - 2021 年 3 月 同一技术 二宫健 2019 年 4 月 - 2022 年 3 月 先进材料资源研究中心 材料资源研究组 古贺博久 2018 年 9 月 - R4.3 〃 中村英佑 H30.9 ~ H31.6
想象一下,明天一家知名科技公司宣布他们已经成功创建了人工智能 (AI),并让你对其进行测试。你决定首先测试所开发的人工智能的一些非常基本的能力,例如将 317 乘以 913 和记住你的电话号码。令你惊讶的是,系统在这两项任务上都失败了。当你询问系统的创建者时,你被告知他们的人工智能是人类水平的人工智能 (HLAI),而且由于大多数人无法执行这些任务,所以他们的人工智能也不能。事实上,你被告知,许多人甚至不能计算 13 x 17,或者记住他们刚遇到的人的名字,或者认出办公室外的同事,或者说出他们上周二早餐吃了什么2。此类限制的清单相当长,是人工智能愚蠢领域的研究主题 [Trazzi and Yampolskiy, 2018; Trazzi and Yampolskiy, 2020]。术语“通用人工智能 (AGI)”[Goertzel 等人,2015] 和“人类水平人工智能 (HLAI)”[Baum 等人,2011] 已互换使用(参见 [Barrat,2013],或“(AGI)是一种机器的假设智能,它有能力理解或学习人类能够完成的任何智力任务。”[匿名,2020 年 7 月 3 日检索]),指的是人工智能 (AI) 研究的圣杯,创造一种能够:在广泛的环境中实现目标的机器
玉米淀粉BP 175.50钠淀粉乙二醇BP 12.00甲基对羟基苯甲酸酯BP 0.300丙基对羟基苯甲酸酯BP 0.200硬脂酸镁BP 13.00胶体无水硅胶BP 5.00纯化的Talc BP 7.00 croscarsemellose bp 7.00 Croscarmellose sodium bp 10.00羟基苯甲酸盐,二氧化钛,滑石和聚乙烯甘油)
本文是我们之前在 SGJ 期刊上发表的文章的更新,标题为:关于哥德尔不完备定理、人工智能和人类思维 [7]。我们对人工智能、人形机器人和未来场景的最新发展提供了一些评论。基本上,我们认为对未来更深思熟虑的方法是“技术现实主义”。
研究问题在于:商业智能在提高约旦工业公司供应链绩效方面发挥了什么作用?本研究采用定量描述设计来探索商业智能在提高约旦供应链绩效方面的作用。研究样本采用分层随机样本选择。研究预期参与者人数为 300 人,以确保约旦工业公司具有足够的代表性。结果表明,商业智能在提高约旦工业公司供应链绩效(敏捷性、集成性、效率、客户响应能力)方面发挥了积极作用。建议约旦公司通过采用商业智能工具和技术增加对提高供应链绩效的投资。此外,还应通过培训计划注重培养人才,这必将提高员工更好地利用商业智能技术和数据的能力。
欧盟 (EU) 各部门(包括制造业、能源和医疗保健)在不久的将来也将面临挑战。此外,这些基础设施和服务是双重数字和绿色转型的核心,旨在利用技术进步和环境可持续性之间的协同作用。因此,有必要确保欧盟的网络能够胜任这项任务,包括传输速度。拥有高性能、传输速度更快的固定和移动网络也可以通过提高国内生产总值对经济发展产生积极影响。欧盟委员会在其数字十年战略中提出了 2030 年新的战略连通性目标愿景,例如为欧盟推出具有千兆速度的下一代宽带基础设施做好准备。本次简报旨在概述全光纤和 5G 移动网络,这是欧盟数字十年目标的一部分,旨在加速部署和投资面向未来的基础设施。在此背景下,它讨论了欧盟全光纤和 5G 移动技术的现状,包括吸引私人投资的挑战,并探索网络部署的新商业模式。距离实现 2030 年连通性目标还有 7 年的时间,因此,了解欧盟在未来网络部署方面的现状、应对挑战并寻找有助于欧盟电信行业蓬勃发展的机会至关重要。简报 EN
摘要 理解人类智能,特别是脑智能,是实现终极人工智能的基石。本文简要回顾了人工智能与脑科学的历史互动,展望了人工智能在互联世界中的未来愿景。特别介绍了网络智能(WI,互联世界中的人工智能)和脑信息学(BI,以大脑/心智为中心的脑机智能研究与应用)两个快速发展的领域,并将它们结合起来,加速人类水平的人工智能社会的到来。此外,通过将人工智能和脑科学与大数据相结合,将创造出从系统的脑机智能研究到互联的社会-信息-物理-思维空间中新的人工智能产业链的新愿景。