ACGIH 美国政府工业卫生学家会议 CAS # 化学文摘服务编号 - 用于唯一标识化学化合物 CNS 中枢神经系统 EC 编号 - 欧洲共同体编号 EMS 紧急计划(危险货物船舶紧急程序) GHS 全球协调系统 GTEPG 集团文本紧急程序指南 IARC 国际癌症研究机构 LC50 50% 致死浓度/半数致死浓度 LD50 50% 致死剂量/半数致死剂量 mg/m³ 毫克/立方米 OEL 职业接触限值 pH 值与氢离子浓度有关,使用 0(高酸性)至 14(高碱性)的等级。 ppm 百万分率 STEL 短期接触限值 STOT-RE 特定目标器官毒性(重复接触) STOT-SE 特定目标器官毒性(单次接触) SUSMP 药品和毒物统一分类标准 SWA 澳大利亚安全工作协会 TLV 阈限值 TWA 时间加权平均值
全球机遇: 全球 HPQ 市场规模约为 6 万 t(约 5 亿美元)。 该市场具有稳定增长的特点,每年增幅为 3-5%。 全球 HPQ 消费量的 60% 来自微电子和太阳能。 全球电子行业稳定增长,规模达到 1050 万平方英寸(3.38 亿美元)。以目前的增长率,到 2017 年市场规模可能翻一番。 HPQ 市场的增长动力是石英坩埚市场。2013 年市场规模估计为 4.34 亿美元,年均增长率为 12%。半导体行业的石英坩埚占据了大部分市场。 半导体行业的硅市场预计每年将以 7% 的速度增长。 所有微电子用坩埚中,35% 采用 300 毫米工艺,40% 采用 200 毫米工艺。随着 200 毫米工艺逐渐被 300 毫米和 450 毫米工艺取代,对优质产品的需求将不断增长。 全球太阳能发电站容量超过 100GW。太阳能电池安装的年平均增长率预计将达到 22%。 太阳能市场增长将推动太阳能用坩埚份额在 2015 年上升至 34%(2008 年为 21%)。 HPQ 市场是垄断市场,其特点是价格不断上涨、质量问题、现货价格(客户关注)。
在行业中,分析化学用于确保产品质量和安全性。通过分析产品样品,我们可以确保产品符合质量标准设置并安全消费或使用。在医学领域,分析化学在疾病的诊断中起着重要作用。通过血清,尿液或其他体液等生物样品分析,我们可以检测出疾病或健康问题的存在,以计划适当的治疗。临床分析主要使用分析化学品(D'Orazio,2003)。随着分析化学的发展,临床分析不仅在临床化学实验室中进行。生物标本的分析测量值在各个地方(包括医院的服务点(护理点),医院外部的服务以及患者的家(家庭护理)(家庭护理))常规进行。用于测量某些快速准确的标本的生物分析传感器对于与紧急情况相关的服务非常必要。除了快速准确,化学分析还必须具有选择性和敏感性。
理解对光的材料结构反应对于推进纳米级超快激光体积结构的加工分辨率至关重要。需要选择性热力学途径以最快的方式淬灭能量传输,并将过程限制在纳米长度上,绕过光学分辨率。在限制下量化材料动力学,可以原位访问瞬态局部温度和密度参数,因此成为理解过程的关键。我们使用时间分辨的定性和定量的光学相显微镜在整个物质α -Quartz中报告热力学状态的原位重建。助热动力学表明快速的空间限制的晶体至不汤过渡到热致密的熔融二氧化硅形式。致密化超过20%,在第一纳秒中,基质温度升至超过2,000 k。这种结构状态在数百纳秒中放松。光束到皮秒持续时间的分散和时间设计增加了空间限制,并触发了基于纳米挥手的极端纳米结构过程,该过程基于纳米挥手发生,在非变形材料中发生,在该材料中,低效率阶段降低了该过程的机械需求。在体积中获得了小于光波长的十分之一的处理特征量表。这允许在3D限制下进行结构和形态学的纳米级材料特征,可以设计光学材料。
Atlas AI旨在解决现有数据科学和机器学习解决方案的缺点。通过将最先进的NVIDIA GPU,BIONEMO™API和大型语言模型(LLM)与德勤的专有AI模型和数据管道结合使用,科学家可以更好地了解分子和化合物之间的相互作用,以支持新目标和产品开发。
理解对光的材料结构反应对于推进纳米级超快激光体积结构的加工分辨率至关重要。需要选择性热力学途径以最快的方式淬灭能量传输,并将过程限制在纳米长度上,绕过光学分辨率。在限制下量化材料动力学,可以原位访问瞬态局部温度和密度参数,因此成为理解过程的关键。我们使用时间分辨的定性和定量的光学相显微镜在整个物质α -Quartz中报告热力学状态的原位重建。助热动力学表明快速的空间限制的晶体至不汤过渡到热致密的熔融二氧化硅形式。致密化超过20%,在第一纳秒中,基质温度升至超过2,000 k。这种结构状态在数百纳秒中放松。光束到皮秒持续时间的分散和时间设计增加了空间限制,并触发了基于纳米挥手的极端纳米结构过程,该过程基于纳米挥手发生,在非变形材料中发生,在该材料中,低效率阶段降低了该过程的机械需求。在体积中获得了小于光波长的十分之一的处理特征量表。这允许在3D限制下进行结构和形态学的纳米级材料特征,可以设计光学材料。