关键原材料 (CRM) 对欧洲的绿色能源转型至关重要。正岩浆矿物系统蕴藏着重要的绿色转型(关键)原材料 (GTRM),包括镍、铜、钴、钒、钛、铬和铂族元素 (PGE)。尽管欧盟在几个成员国都有可能开采更多矿山,但目前只有 2 个矿山在运营。欧盟资助的 SEMACRET 项目将在芬兰、葡萄牙、波兰和捷克开展研究,以开发社会和环境可持续的正岩浆 CRM 勘探方法。
新闻通讯。1998年7月和12月,第5(1,2):18 -24。2)A.A。 Juwarkar,A.B。Kulkarni,H.P。 Jambhulkar和P. Khanna。 通过综合的生物技术方法(Neeri的经验)填海垃圾。 由钢铁和矿业部组织的巨型活动1998年8月6日至8日:印度矿产工业 - 观点,pp。 297-307。 3)A。 A. Juwarkar和H.P. Jambhulkar。 通过生物学干预措施恢复粉煤灰转储。 环境监测和评估卷139,第1-3号,2008年4月,第355 -365页。 4)A.A。 Juwarkar和H. P. Jambhulkar Phytoremedemedemedeation通过综合生物技术方法破坏了垃圾场。 Bioresource Technology.Vol.99 /11,10月; 2008 pp.4732-4741。 5)Hemlata P. Jambhulkar和Asha A. Juwarkar。 评估在粉煤灰垃圾场种植的不同植物物种对重金属的生物积累。 生态毒理学和环境安全。 (2009)。 第72卷,第1122-1128页。 6)Asha Ashok Juwarkar,Lal Singh,S.K。 Singh,Hemlata P. Jambhulkar,Prashant R. Thawale和Harsha Kanfade。 自然与印度木兰矿山矿山变质的林木森林 - 印度那格浦尔的锰矿石 - 关于继任变化,开垦技术和植物多样性的案例研究。 国际采矿,开垦与环境杂志(2014年)。 第29卷,第6页。 第476-498号。 7)Juwarkar AA,Singh L,Kumar GP,Jambhulkar H P,Kanfade H&Jha A K.通过动植物动物的互动中修复的矿山的生物多样性促进。Kulkarni,H.P。Jambhulkar和P. Khanna。通过综合的生物技术方法(Neeri的经验)填海垃圾。由钢铁和矿业部组织的巨型活动1998年8月6日至8日:印度矿产工业 - 观点,pp。297-307。3)A。A. Juwarkar和H.P. Jambhulkar。 通过生物学干预措施恢复粉煤灰转储。 环境监测和评估卷139,第1-3号,2008年4月,第355 -365页。 4)A.A。 Juwarkar和H. P. Jambhulkar Phytoremedemedemedeation通过综合生物技术方法破坏了垃圾场。 Bioresource Technology.Vol.99 /11,10月; 2008 pp.4732-4741。 5)Hemlata P. Jambhulkar和Asha A. Juwarkar。 评估在粉煤灰垃圾场种植的不同植物物种对重金属的生物积累。 生态毒理学和环境安全。 (2009)。 第72卷,第1122-1128页。 6)Asha Ashok Juwarkar,Lal Singh,S.K。 Singh,Hemlata P. Jambhulkar,Prashant R. Thawale和Harsha Kanfade。 自然与印度木兰矿山矿山变质的林木森林 - 印度那格浦尔的锰矿石 - 关于继任变化,开垦技术和植物多样性的案例研究。 国际采矿,开垦与环境杂志(2014年)。 第29卷,第6页。 第476-498号。 7)Juwarkar AA,Singh L,Kumar GP,Jambhulkar H P,Kanfade H&Jha A K.通过动植物动物的互动中修复的矿山的生物多样性促进。A. Juwarkar和H.P.Jambhulkar。通过生物学干预措施恢复粉煤灰转储。环境监测和评估卷139,第1-3号,2008年4月,第355 -365页。4)A.A。 Juwarkar和H. P. Jambhulkar Phytoremedemedemedeation通过综合生物技术方法破坏了垃圾场。Bioresource Technology.Vol.99 /11,10月; 2008 pp.4732-4741。5)Hemlata P. Jambhulkar和Asha A. Juwarkar。评估在粉煤灰垃圾场种植的不同植物物种对重金属的生物积累。生态毒理学和环境安全。(2009)。第72卷,第1122-1128页。 6)Asha Ashok Juwarkar,Lal Singh,S.K。 Singh,Hemlata P. Jambhulkar,Prashant R. Thawale和Harsha Kanfade。 自然与印度木兰矿山矿山变质的林木森林 - 印度那格浦尔的锰矿石 - 关于继任变化,开垦技术和植物多样性的案例研究。 国际采矿,开垦与环境杂志(2014年)。 第29卷,第6页。 第476-498号。 7)Juwarkar AA,Singh L,Kumar GP,Jambhulkar H P,Kanfade H&Jha A K.通过动植物动物的互动中修复的矿山的生物多样性促进。第72卷,第1122-1128页。6)Asha Ashok Juwarkar,Lal Singh,S.K。Singh,Hemlata P. Jambhulkar,Prashant R. Thawale和Harsha Kanfade。自然与印度木兰矿山矿山变质的林木森林 - 印度那格浦尔的锰矿石 - 关于继任变化,开垦技术和植物多样性的案例研究。国际采矿,开垦与环境杂志(2014年)。第29卷,第6页。第476-498号。7)Juwarkar AA,Singh L,Kumar GP,Jambhulkar H P,Kanfade H&Jha A K.通过动植物动物的互动中修复的矿山的生物多样性促进。生态系统与生态学杂志。(2016)。批量6,第1期,第1-10 8号)Hemlata P. Jambhulkar,Siratun Montaha .S Shaikh和M Suresh Kumar。粉煤灰毒性,新出现的问题以及对农业剥削的可能影响;印度情景:评论化学圈(2018)。vol.213,2018年12月,第333-344页9)Hemlata P. Jambhulkar&M Suresh Kumar(2019)。通过生物技术路线的矿山破坏倒计时的生态恢复方法。环境监测和评估2019年11月,191-772 10)Hemlata P Jambhulkar。(2023)。粉煤灰改善对土壤健康的影响和不利影响;评论。印度环境管理协会杂志2023年10月,第43卷,第3期,第3页,01- 08。专利
1。当今的引言在可用的采矿技术中占有越来越重要的位置(Acevedo,2002; Mutch等,2010; Seitkamal等,2020; Cheng等,2021)。涉及硫化物矿物质浸出的最重要的细菌是嗜酸性硫巴基利。氮,磷,硫和镁等元素对于A.F.的生长至关重要。(Seifelnassr和Abouzeid,2000年)。为了在液体培养基中培养氧化细菌,已经开发了许多培养基。是酸性矿山排水的最常用培养基和酸性生长细菌是9K培养基,由Silverman和Lundgren在1959年描述(Silverman and Lundgren,1959年)。在用于生物座位之前,应对酸性矿山排水获得的细菌进行几个隔离过程,以达到足够的纯度和种群。金属从金属硫化物中浸出的金属可以通过一些嗜酸铁和/或氧化细菌加速。这些细菌是从工业浸出操作或自然浸出和酸性矿山排水区中分离出来的。在一项研究中,三个嗜酸性,化学营养性,
我确实承认,该矿井已对舱口密封件的制造和标记方式进行了更改,以防止人员无意进入。有人建议自然资源、矿产和能源部应就此颁布一些强制性标准。我很清楚,不应该有强制性标准,相反,该部门最多只能就可能适用的内容提出指导方针(或指导说明)。各个矿山经营者有义务评估每种情况,以确定什么是合适的设计,以及其舱口密封件的其他相关考虑因素。虽然我建议该部门制定一个可以考虑的指导方针,但该指导方针不会包罗万象,因为不同矿山的考虑因素有很多种,我注意到,正如我所说,这项义务在于矿山经营者。他们不能免除对该部门的职责,因为根据法律,他们有责任采取适当措施保护煤矿工人。因此,虽然我建议该部门制定一份可纳入法规的指导说明,但矿场应准备一份风险评估,说明在封存作业期间如何防止任何进一步的入侵进入 GOAF。任何相应的法规改进也应进行。
“我们通过昆士兰州关键矿产和电池技术基金的投资为EQ资源提供了一条途径,可以通过进一步探索可通过地下采矿访问的钨资源来扩展现有矿山。新的工厂设备,钻探测试和试验采矿将预计将其产能并将矿山的寿命延长至少五年,从而确保全球对钨的需求继续为遥远的北昆士兰州人提供当地的机会。”资源和关键矿产部长斯科特·斯图尔特(Scott Stewart)评论说:“钨产量的复兴是昆士兰州关键矿物繁荣的另一个非凡的成功故事。自2019年重返运营以来,卡宾枪钨矿已成为遥远北部的主要雇主,那里有175名工人和承包商有望每年生产约3,000吨钨浓缩液。预计现有的开放式矿山将在2029年到达生命的尽头,但迈尔斯政府致力于支持这些工人和他们称之为家的社区。”
IPO进行分配。PT Merdeka电池材料(MBMA)是一家垂直集成的电动汽车(EV)供应链公司。该公司目前拥有一个镍矿山矿山(Sulawesi cahaya矿产(SCM)矿山),镍矿石资源为11亿吨,以及一个旋转式kiln-electric炉(RKEF)冶炼厂,生产能力为38ktpa。具有IDR 780 - RP 795的书本范围,MBMA可能会从其IPO中提高IDR 8.6Tn-IDR 8.7TN。MBMA将发行110亿股新股,相当于其已发行和付费资本的10.2%。The planned proceeds allocation is as follows: 1) 48% will be used for debt repayment, 2) 5% will be used to take over receivables of USD 30mn arising from the Parent Support Facility Agreement, 3) 1.5% will be used as working capital, 4) 8.0% will be used to support the completion of the AIM I project, 5) 14.0% will be used for ZHN's RKEF smelter, including the installation of nickel matte转换器,6)6%将用于SCM矿项目,其余将用于HPAL 1A项目。
说到电池,绿色对您来说意味着什么?绿色电池首先是一种储存“绿色”电子的电池,这些电子由风能或太阳能等可再生能源产生。但电池本身是不可再生的。电池含有从地壳中开采的矿物质,这些矿物质与化石燃料一样,无法自然补充。因此,要使电池成为绿色电池,其生命周期中的其他因素也需要具有可持续性。这些因素不仅包括矿物的开采方式,还包括矿山相对于制造厂或最终用户的位置——例如,矿山和工厂之间的距离越近,原材料运输所需的能源就越少。
在地下矿山中使用电池电动汽车(BEV)比传统使用柴油机提供了重大好处:通过产生零有毒气体和柴油机颗粒物(DPM)排放并降低热量和噪音水平,更健康的工作条件。其他好处包括潜在的降低通风和空调成本以及潜在的温室气体排放量。尽管如此,在地下地雷中使用BEV仍然有限。许多原因之一是,BEV的消防安全仍然不太了解。BEV的火灾风险与柴油机的火灾风险不同。BEV不带大量可燃液体(柴油燃料和发动机机油)。 他们也没有热排气系统。 但是,由于最初的火灾被扑灭后电池重新燃烧的可能性,BEV大火熄灭了。 目前,没有足够的数据表明,与地下矿山中的柴油大火相比,BEV大火更普遍或更危险,并且没有与地下矿山BEV火灾有关的记录死亡。 尽管如此,在地下矿山中,BEV大火的后果比柴油大火更高,因为熄灭要困难得多。 因此,地下矿山对BEV消防安全有足够的了解至关重要。 本文概述了防止热失控的措施,这是BEV火灾的主要原因,以及如何手动扑灭BEV火灾并管理地下地雷的电池充电防护区。BEV不带大量可燃液体(柴油燃料和发动机机油)。他们也没有热排气系统。但是,由于最初的火灾被扑灭后电池重新燃烧的可能性,BEV大火熄灭了。目前,没有足够的数据表明,与地下矿山中的柴油大火相比,BEV大火更普遍或更危险,并且没有与地下矿山BEV火灾有关的记录死亡。尽管如此,在地下矿山中,BEV大火的后果比柴油大火更高,因为熄灭要困难得多。因此,地下矿山对BEV消防安全有足够的了解至关重要。本文概述了防止热失控的措施,这是BEV火灾的主要原因,以及如何手动扑灭BEV火灾并管理地下地雷的电池充电防护区。