面板和门板厚度 0.8 mm 面板必须使用 aluzink 185 进行保护 面板和门板的表面处理约为 5 µm 面板隔热层厚度 50 mm 隔热层必须为高密度矿棉 - 50 kg/m3 矿棉必须为不可燃类型 矿棉必须达到 DIN 4102 规定的 A1 级防火标准。面板必须配备耐用的柔性密封条(密封条焊接在面板上,形成一个无孔的统一条带)。检查门必须配备长期柔性密封条。各部分之间使用耐用密封条进行密封,并且必须使用锁定系统有效地保持在一起。所有钢制支架、盖子和框架必须使用 aluzink 185 进行保护。如果没有空间正常打开门,则必须使用坚固的铰链安装检查门,并配有易于拆卸的不锈钢销钉,以便轻松拆卸门。
研究结果显示,要实现 IEA 净零排放目标,改造市场需要从目前的 5000 亿美元增长到 2030 年的约 2.9 万亿美元和 2050 年的 3.9 万亿美元。从 2023 年到 2030 年,仅改造就可能需要近 80 亿吨材料。从 2023 年到 2050 年,这一数字将增加到近 400 亿吨。预计玻璃、钢铁、混凝土、铝、砖和塑料将成为窗户、覆层和屋顶等改造部件的最大需求。其他常用于绝缘更换和升级的基本改造材料包括玻璃纤维、矿棉、泡沫板和喷涂泡沫。
在膨胀粘土行业,高达 90% 的产品可以重复使用。它还节省资源,因为 1m³ 天然粘土将产生大约 4m³ 的膨胀粘土。高达 100% 的膨胀粘土添加剂和 10-15% 的原始粘土可以被来自其他行业部门的替代材料所取代。膨胀粘土制造商使用废物作为添加剂或燃料,从而减少了对原始原料的需求。例如,一家比利时制造商使用来自钢铁行业的氧化铁作为添加剂。这种氧化铁是膨胀过程中所必需的,因为膨胀粘土不具备可实现膨胀的化学性质,同时也有助于降低整个过程中的能耗。此类添加剂来自炼油厂、植物油生产商、生物柴油、钢铁生产或处理、工业和市政废水清洁、矿棉和其他类型的废物。
• 经批准可降低空气室中塑料部件的火焰蔓延 (<25) 和烟雾产生 (<50) • 厚度为 1/2 英寸,密度为 8 pcf,轻薄 • 可轻松适应复杂的管道和电缆安装 • 完全箔封装,安装快速干净,并最大限度地减少回风室中的灰尘 • 使用 1 英寸重叠和捆扎带或扎带固定,易于安装 • 填充毯完全是无机的且不易燃 • 包含 2192°F (1200°C) 额定纤维,与矿棉或玻璃纤维相比具有更高的安全性 • 在 75 -95% 相对湿度条件下抗霉菌生长(ASTM D6329) • 不受油或水影响 • 不会随着时间的推移而失去防火性能 • 提供 48 英寸宽度,减少接头和安装人工
噪音污染被恰当地描述为现代瘟疫之一。[1] 由于嘈杂的环境会对健康产生许多不利影响,从睡眠障碍到心血管疾病,减少人类接触过多噪音对于居住在城市的大量人口的公共健康至关重要。 关于吸音材料,最佳选择取决于预期的声音频率范围; 衰减高频声波的解决方案依赖于与极低频噪声解决方案完全不同的吸收机制。 在室内,最常用的吸音材料本质上是多孔的,因为它们能够以相对较薄的层有效吸收中高频声音。 市场上常见的多孔吸收材料,目标是在 350 Hz 以上吸收超过 90%,包括玻璃棉和矿棉以及由三聚氰胺或聚氨酯制成的吸音泡沫。 在这里,我们回顾了气凝胶的声学特性,并展示了它们挑战和超越当前市场标准的吸收特性的巨大潜力,无论我们谈论的是气凝胶在声学和声学方面的性能。
仅加热和冷却就占总能源使用量的一半。由于其中 66% 的能源来自化石燃料 [2],因此,高效隔热和冷却材料对于降低人为 CO 2 排放至关重要。除了提供所需的热性能外,此类材料还应安全、可回收,并在制造和运行过程中消耗最少的能量。最先进的绝缘材料还不能满足这些要求。聚合物基绝缘体(例如发泡/挤塑聚苯乙烯和聚氨酯泡沫)的热导率相对较低,但耐火性和报废可回收性有限。尽管无机绝缘体具有固有的耐火性,但玻璃棉和矿棉在制造过程中涉及高能量过程,并且表现出被认为对人体健康有害的纤维形态。气凝胶是一种有吸引力的高性能绝缘无机材料,但其高成本迄今为止限制了其在小众应用中的使用。现有绝缘材料的优点和缺点为开发新技术提供了机会。多孔陶瓷因其成本低、耐火、可回收和导热系数相对较低等优点,最近作为替代隔热材料受到了越来越多的关注。[3–7] 除了隔热之外,多孔陶瓷还被用于通过实现建筑元素的被动冷却来改善建筑物的热管理。[8] 被动冷却依赖于渗入陶瓷孔隙中的水的蒸发,在蒸汽压缩技术出现之前,这种机制长期用于降低食物和水的温度。由于孔隙是隔热和蒸发冷却所需的关键结构特征,因此制造具有可控孔隙率的陶瓷对于开发用于建筑热管理的节能技术具有巨大潜力。在本研究中,我们使用湿泡沫模板 3D 打印分层多孔陶瓷,并研究其用于建筑元素热管理的隔热和蒸发冷却性能。分层多孔结构设计为包含大量大孔,可降低材料的导热性,同时还显示实现毛细管驱动被动冷却所需的微米级孔隙。利用粘土作为可回收、廉价且广泛可用的材料资源,我们首先开发了湿泡沫