因此,峰值强度的测量确实提供了有关每个样品中相应矿物相的相对量的信息。沉积物指纹将沉积物的矿物学或地球化学性质与其来源材料联系起来。如果可以通过其地球化学性质区分来源材料,则可以通过比较沉积物和来源材料的性质来确定沉积物的可能来源(Walling 等人,2003 年)。需要区分几个潜在的沉积物来源区域意味着单一的指纹属性通常不太可能提供可靠的来源指纹。因此,最近的大多数源指纹研究都使用了复合指纹,包括一系列不同的诊断属性和混合模型来量化来自不同来源的沉积物的相对贡献(Collins 和 Walling,2002 年;Collins 等人,2010 年)。聚类分析是一种强大的工具,可用于对数据进行分类和排序,以建立此类数据之间的关系(Sneath 和 Sokal,1973 年;Yang 和 Simaes,2000 年)。聚类分析也称为分割分析或分类分析(Aldenderfer 和 Blashfield,1984 年;Everitt 等人,2001 年)。该方法创建具有“相似性”的对象分组,这些相似性可以用任何可测量的参数来量化。许多不同的研究领域,如工程学、动物学、医学、语言学、人类学、心理学、市场营销,甚至地质学,都为聚类技术的发展及其应用做出了贡献(Cortés 等人,2007 年;de Meijer 等人,2001 年;Mamuse 等人,2009 年)。可以执行两种聚类分析方法:(1)层次聚类(Johnson,1967;Kaufman 和 Rousseeuw,2009),其中使用迭代算法将数据分组到聚类中(2)K 均值聚类(Army,1993;Kanungo 等,2002;Wagstaff 等,2001),其中聚类的数量是预先定义的,并且所有数据点根据某些特定特征或指标分布到聚类中。在本研究中,层次聚类用于创建聚类树,也称为树状图,从而允许决定最适合应用的聚类级别或规模。有多种执行层次聚类的方法,例如:1. 单链接方法,基于使用一个聚类内的一个个体与相邻聚类中一个个体之间的最小距离构建的层次结构。该方法有助于识别不规则的簇形状,但由于统计测试表现不佳以及层次树的图形表示难以解释而无法获得有关完整簇大小和形状的直接定量信息,因此受到限制。
•高级计算建模,以确定二氧化碳羽流的最大程度和压力前端,以定义所提出的项目区域和纠正措施程序,用于在项目站点附近的所有现有非项目的井井有条,被发现插入不足和放弃。计算建模基于彻底的站点表征,监视和操作数据。请参阅许可申请叙述文件(日期为2024年6月20日)和审查区域(AOR)和纠正行动计划文件(许可申请的附件2,日期为2024年7月30日); EPA的其他信息请求(RAI),包括RAI#1(日期为2023年6月27日),RAI#2(2023年8月30日),RAI#3(2023年11月9日)和RAI#4(2024年5月22日); OLCV在2023年11月28日(RAI#1,RAI#2和RAI#3)和2024年8月20日(RAI#4)中对每个RAI和更新申请提交提交的响应提交(RAI#1,RAI#2和RAI);和联邦技术援助计划文件,FTAP第三方评论Oxy R06-TX-0005_FINAL(2023年2月)和Oxy Brown Pelican-R06-TX-0005-_RE-RE-RE-REVIEW#1-8-26-2024(2024年8月)。•对区域地质(岩石层和结构)的详细研究,以确认二氧化碳将保留在注入其中的形成中。这包括在注射形成上方的厚,致密,不可渗透的地层,该形成将用作“狭窄区”,以防止二氧化碳向上移动。它还包括对现场水文学的表征,包括项目AOR中最低的USDW的位置。•拟议的井建筑设计。请参阅许可申请叙述文件; AOR和纠正行动计划文件(许可申请的附件2,日期为2024年7月30日); RAI#2,RAI#3和RAI#4; OLCV对每个RAI的回应。这包括建筑材料,测试和监视程序以及紧急关闭程序。请参阅注入井建筑计划(许可申请的附件4,日期为2024年7月30日);测试和监视计划(许可申请的附件6,日期为2024年7月30日);紧急和补救响应计划(许可申请的附件9,日期为2024年7月30日); RAI#2和RAI#4; OLCV对每个RAI的回应。•要注入二氧化碳的特征。这包括二氧化碳流的化学成分以及流和注射储层盐水和矿物学之间的潜在地球化学反应。请参阅许可申请叙述文件和AOR和纠正措施计划文件(许可申请的附件2,日期为2024年7月30日)。•拟议的方法和技术将在注射过程中和注射后用于监测项目。这包括监测井的物理状况,二氧化碳羽流的位置和大小,地下压力变化,地层上方的水质和地震性(包括太小的事件在表面上太小)。请参阅测试和监视计划(日期为2024年7月30日)(许可申请的附件6); OLCV的测试和监测活动质量保证监视计划(日期为2024年7月30日); RAI#1,RAI#3和RAI#4; OLCV对每个RAI的回应。
86/1大学街,加尔各答 - 700073,印度W.B.作为质地,通过大气,水圈,岩石圈和生物圈条件的独特融合在前寒武纪时代的大部分地区沉积,在这些融合中,微生物可能在其起源中起着重要作用。 Banded Iron Formation (BIF) and associated iron ore deposits occupy three distinct provinces (best-preserved basins of the Precambrian period that form Iron Ore Super Group) surrounding the North Odisha Iron Ore Craton (NOIOC) located in eastern India and have been studied in detail along with the geochemical evaluation of different iron ores, suggests that the massive, hard laminated, soft laminated iron ore intricately related with the带状的赤铁矿贾斯珀具有来自BIF的遗传谱系,有助于水热活性的某些输入。 在当前情况下,印度钢铁行业完全取决于高级铁矿石。由于对高质量的铁矿石的需求很高,并且高级矿石的快速耗竭,因此必须强调瘦矿石的慈善物,例如带状的赤铁矿果酱(BHJ)和带状的赤铁矿石英岩(BHQ)作为铁矿石的替代资源。关键词:带有铁的形成,成分,分布,创世纪,北奥里萨邦铁矿石克拉顿,印度。 序列带铁地层形成了地球矿物质的珍宝之一。 1)。86/1大学街,加尔各答 - 700073,印度W.B.作为质地,通过大气,水圈,岩石圈和生物圈条件的独特融合在前寒武纪时代的大部分地区沉积,在这些融合中,微生物可能在其起源中起着重要作用。Banded Iron Formation (BIF) and associated iron ore deposits occupy three distinct provinces (best-preserved basins of the Precambrian period that form Iron Ore Super Group) surrounding the North Odisha Iron Ore Craton (NOIOC) located in eastern India and have been studied in detail along with the geochemical evaluation of different iron ores, suggests that the massive, hard laminated, soft laminated iron ore intricately related with the带状的赤铁矿贾斯珀具有来自BIF的遗传谱系,有助于水热活性的某些输入。在当前情况下,印度钢铁行业完全取决于高级铁矿石。由于对高质量的铁矿石的需求很高,并且高级矿石的快速耗竭,因此必须强调瘦矿石的慈善物,例如带状的赤铁矿果酱(BHJ)和带状的赤铁矿石英岩(BHQ)作为铁矿石的替代资源。关键词:带有铁的形成,成分,分布,创世纪,北奥里萨邦铁矿石克拉顿,印度。序列带铁地层形成了地球矿物质的珍宝之一。1)。除了BIF一词外,这些岩石在不同大陆上以Itabirite,jaspilite,hapite-Quartzite和Xtpocularite的形式知道(Evans,1993)。没有模型来解释带状形成的起源,赢得了一致接受。带状外观是由MM与CM厚的深灰色氧化物与黑色铁氧化物的厚床的亲密相互作用引起的(图。它们发生在地层单元中,厚度为数百米,横向范围内数百甚至数千公里。这些铁地层的大量部分可直接使用,因为低级铁矿石(例如taconite)和其他部分是高级沉积物的蛋白质。与目前对铁矿石的巨大需求相比,现在接近109 T P.A.,带状铁层中可最小的矿石的储量确实很大(James and Sims,1973)。An extraordinary fact emerging from recent studies is that the enormous bulk of iron formations of the world has an amount of at least 1014 t and possibly 1015 t, i.e., 90% or more of the total BIF in the Precambrian, was laid down in the very short time interval of 2500-1900 Ma ago ( James and Trendall, 1982 ) and now represented by the BIF of Labrador, the Lake Superior region of North America, Krivoi Rog和Kursk,苏联和西澳大利亚州的Hamersley集团。尽管BIF在Archaean中很重要,但不能在早期的proterorogic中大规模开发,因为稳定的大陆板通常不存在。与所有其他前寒武纪相比,中国拥有大型且重要的片麻岩托管的古生Bif沉积物。在稳定岩石圈板的发展后,BIF可以同步在很大的区域内放置;这可能发生在板内盆地,肯定在大陆货架上。古老的BIF通常是存在的藻类类型,而这种BLF发育在晚期的Archaean中达到了山峰,并且既出现在高级片麻岩地层和绿岩腰带中。本文代表了对潜在途径的简要回顾,在巨大的前寒武纪BIF沉积的起源中,通过严格研究到目前为止发表的大量文章与该主题有关的大量文章及其经济意义,并特别提及印度事件,保留了不同类型的铁矿石和用途的潜力。矿物学,BIF的组成由二氧化硅(约40-50%)和铁(约20–40%)主导。它们被认为是沉积起源,但始终显示出成岩和变质的夸张,有时会显着改变原始沉积物的成分和矿物学。因此,现在在BIF中发现的主要矿物相,例如赤铁矿(Fe 2 IIIO 3),磁铁矿(Fe 2 IIIFEIIO 4),Chert(Sio 2)和Stilpnomelane(K(k(feiimg,feiiii)8(feiiii)8(si,al)12(a,a,o,OH)27)实际上是次要的次要来源。Proposed primary minerals are ferric hydroxide (Fe(OH) 3 ), siderite (FeII(CO 3 )) (partially secondary), greenalite ((Fe) 3 Si 2 O 5 (OH) 4 ) and amorphous silica ( Klein 2005 ).The iron in BIF originated as dissolved Fe(II) from submarine hydrothermal vents and was subsequently transformed to dissolved Fe(III)在上水柱中,由物有或生物氧化。然后将铁铁迅速水解至铁氧化铁,并定居在海底,随后发生了进一步的转化。
宾汉姆峡谷矿周围被 60 多亿吨(54 亿吨)废石所包围,这些废石是 1903 年至今露天采矿过程中产生的,废石面积约为 2,000 公顷。废石堆从顶部到底部厚度超过 300 米。1930 年至 2000 年,废石堆的选定部分使用基于硫酸铁的浸出剂主动浸出以提取铜,而其他部分仅接受流星浸出。从 2011 年至今,力拓肯尼科特公司研究了宾汉姆峡谷矿废石堆水质的演变及其地球化学控制因素。在此项目中,通过现场测井和 13 个成对的钻孔仪器对废石堆进行了详细描述;在 13 个地点中的 12 个,钻孔穿透了垃圾场的整个深度,穿过了采矿前的土壤接触面,进入了基岩。钻孔深度接近地表以下 275 米,使用旋转声波钻孔方法,以便 (1) 回收岩心和 (2) 测量近现场特性。钻孔的现场记录包括统一土壤分类系统描述、碎屑岩性、相对氧化、糊状物 pH 值和地球物理方法(陀螺仪、温度、中子和伽马)。对钻孔岩心的岩土特性(密度、粒度分布、含水量、塑性指数和极限、直接和块体剪切)进行了分析,通过扫描电子显微镜 (QEMSCAN) 对矿物进行了定量评估,改进了酸碱核算 (ABA),改进了合成沉淀浸出程序 (SPLP),通过 Corescan 进行了高光谱分析,并采集了水样(如果遇到)。钻孔内安装的仪器包括渗水仪、热敏电阻节点、直接温度传感 (DTS) 光纤电缆、时域反射 (TDR) 剪切电缆、气体(氧气、二氧化碳)测量管和振线压力计 (VWP)。此外,每个钻孔点都对当地废石表层的氧气消耗进行了多次测量。从钻孔中获取的数据与广泛钻探、矿物学和岩石地球化学评估、水力和示踪剂测试以及 20 年的渗流和水质数据的历史信息(超过 50 年)相关联,以开发一个描述废石堆的水力、地球化学和物理行为的概念模型。废石堆中的黄铁矿和其他硫化矿物因空气的扩散和对流进入而氧化,产生酸性、高总溶解固体的废水,以及在废石中形成的黄钾铁矾,作为储存额外酸性的次生相。主要的空气进入机制是对流,占废石堆中硫化物氧化的 90% 以上。根据废石堆的温度分布和水平衡,地球化学反应造成的水分损失占水预算的很大一部分。1.0 简介力拓肯尼科特宾汉峡谷矿场现有的废石堆占地约 2,000 公顷,包含超过 60 亿吨(5.4 亿吨)的材料。从 1930 年左右开始,人们一直在对废石堆进行浸出以回收铜,直到 2000 年停止浸出。