1992 年在砂拉越的实地考察是在重要个人和组织的帮助下完成的。首先,我要衷心感谢砂拉越博物馆对我的实地研究的监督,特别是现任馆长 Peter Kedit 博士提供的实用建议和当地知识。我还要感谢其他乐于助人的博物馆工作人员,即 Tazudin Mohtar、Clement Sabang、Tuton Kaboy、Magdaline Kuih 和图书馆工作人员。砂拉越旅游协会(特别是 Rose Tan)和环境与旅游部旅游协调员 Denis Hon 提供了有关旅游的宝贵信息。我要感谢古晋的许多商业旅行社和导游,他们允许我参加 Than 长屋之旅,邀请我分享旅游餐,并分发游客调查表。我特别感谢亚洲陆上服务公司的 Ngu Ka Sen 的支持,这对我在 Nanga Stamang 的实地研究有很大帮助。
nipa sap是一种甜美的半透明饮料,起源于NIPA Palm(NYPA Fruticans)树。在砂拉越,NIPA SAP成为NIPA糖或本地称为古拉Apong的原材料。但是,NIPA SAP经历了自然发酵,从而改变了NIPA SAP的特性,包括味道,香气和质量。发酵的NIPA SAP是白色的,具有不愉快的香气和味道,这使其无法接受。因此,它不再适合制作NIPA糖。这项研究旨在确定NIPA PALM SAP从新鲜到发酵的物理化学和微生物变化。允许NIPA SAP在室温下进行自然发酵56天。在第一个星期每24小时收集样本,在随后的一周中每周一次。使用高性能液相色谱(HPLC)分析了所选的生理化学品质,而使用扩散板分析了微生物含量。新鲜的NIPA SAP显示出最高的糖(334.2±12 g/l),蔗糖作为主要糖(231.5±4.3 g/l),其次是果糖(42.1±1.2 g/L)和葡萄糖(29.7±3.2 g/L)。新鲜的NIPA SAP还具有最低的乙醇(0.08±0.03 g/L),乳酸(1.09±0.06 g/L)和乙酸(0.05±0.01 g/L)以及微生物和酵母菌浓度。后来,乙醇在第4天(9.80±0.1 g/l)开始积聚,最高峰为第21天(19.1±2.01 g/l)。微生物浓度也会改变,影响NIPA SAP的质量。由于NIPA SAP在砂拉越人民的生活方式中起着如此重要的作用,因此这项研究可以更好地了解其发酵过程的微生物学和生物化学。因此,应考虑正确处理新鲜NIPA SAP的适当计划,以确保增值产品生产的质量。
北泰恩赛德的人现在可以期望寿命更长,而到2030年,年龄在85岁及85岁的人数增加了24%。尽管预期寿命增加,这是个好消息,但在北泰恩赛德,它仍然低于全国平均水平,包括人们期望生活的年龄。在北泰恩赛德(North Tyneside)内,预期寿命有很多差异,并且年龄良好,这一差距需要缩小。
奥古斯都(Augustus)是一名矿物探险家,致力于探索其两个潜在项目,重点是西澳大利亚州的黄金和关键矿物质。Ti-Tree Project-Augustus拥有位于西澳大利亚州Gascoyne地区的约3,600公里2的100%所有权,其中有一系列高质量的钻头目标,这对于铜,金,锂,铀和稀有地球都是高度预期的。音乐井项目 - 奥古斯都(Augustus)拥有100%的所有权,> 1,345 km 2,位于西澳大利亚州列奥诺拉(Leonora)以北25公里的物业单位,具有一系列高质量的钻头目标,对黄金,金铜VMS和LITHIUM和稀有地球具有很高的预期。该公司由董事和高级管理人员领导,在探索,寻找,开发和运营开放坑和地下矿山方面具有丰富经验。
这些要求源于1)伊利诺伊州迪凯特的Archer Daniels Midland(ADM)设施的二氧化碳和设备故障的多次泄漏; 2)关于从2011年开始的德克萨斯II类井的不合规违规行为增加的新信息; 3)当将这些井与其他II类井进行比较时,在一个或多个机械完整性测试中未能通过一个或多个机械完整性测试的II类二氧化碳注入井的较高百分比; 4)EPA的调查结果是,钢用于ADM现场以及全国其他其他地区的井结构,易于在CO2注入井中进行腐蚀。我们的要求也与2024年10月的白宫环境司法咨询委员会的建议保持一致。注入井和其他碳捕获基础设施对环境司法社区的不成比例发展将增加对已经受到污染负担过重的社区的伤害的风险,并且与政府的气候司法目标不一致。
该公司并不是拥有执照的持牌承包商,且状态保持不变。 3。竞标程序等。(1)负责的部门A. Kasugai支队,408届会计中队,Kasugai Garrison,日本的自卫队,486-0803,日本负责人:AKATSUKA。 inet.gsdf.mod.go.jp B.日本驻军的规格自卫队,管理部门,维护团队负责人:Yumoto:0568-81-7183(Ext。371)(Ext。371)(Ext。371)(2)(2)(2) 46))。
在凝结物理学中,旋转超氟4和冷原子气体的行为进行了广泛的研究,请参见。[1 - 6]及其中的参考。具有低角速度,ω<ωc 1,超氟4和冷原子气体,放置在最初静止的容器内,由于基本激发的随后旋转而不会响应,因为在这种情况下,基本激发和涡流的产生在这种情况下是无能为力的。随着旋转频率ω的增加,对于ω>ωc1,系统会产生浸入超氟物质中的正常物质的细丝涡旋。然后,对于ω>ωlat>ωC1,涡旋形成三角形晶格,该晶格模拟了容器的刚体旋转。对于ω>ωC2>ωlat>ωC1,经典的冷凝物场被完全破坏。静息金属超导体对外部均匀恒定磁场h的作用做出反应,与中性超氟在旋转方面的响应类似,请参见。[1,7]。通过在该表面层中发生的超导电流(Meissner-Higgs效应),筛选在超导体上的低磁场h(在边界附近的磁场L H(有效光子质量)的所谓穿透深度上进行筛选。超导体在两个类别(第一和第二种的超导体)上细分,这是在Ginzburg-Landau参数的依赖性的依赖性的,其中L ϕ是所谓的相干长度,是公寓
摘要。气体监测是理解地下环境中天然气的交换,扩散和迁移过程的先决条件,这与多种应用有关,例如CO 2的地质隔离。在这项研究中,将三种不同的技术(微型GC,红外和拉曼光谱镜)部署在一个实验性的钻孔上,以进行CO 2注射后的监测目的。的目的是开发一种实时化学监测装置,通过在井眼内的水中测量溶解的气体浓度,但也通过与井孔水平的平衡中的气体收集系统在表面上进行测量。但是,必须校准所有三种技术以提供最准确的定量数据。为此,实现了实验室中的第一个校准步骤。需要进行新的校准,以确定水中或气体收集系统中的气体浓度和/或浓度。用于气相分析,微型-GC,FTIR光谱和拉曼光谱法。对于CO 2,CH 4和N 2进行了Mi-CRO-GC的新校准,不确定性从±100 ppm到1.5 mol%,具体取决于散装浓度和气体类型。先前对CO 2和CO 2,N 2,O 2,CH 4和H 2 O校准了FTIR和RAMAN光谱仪,其精度为1 - 6%,具体取决于浓度尺度,气体和光谱仪。溶解的CO 2。预测溶解的CO 2浓度的不确定性分别为±0.003 mol kg 1和±0.05 bar。
文库。除此之外,源井还提供CRISPR-KO、CRISPRa、CRISPRi 三大定制文库从高通量sgRNA 文
文库。除此之外,源井还提供CRISPR-KO、CRISPRa、CRISPRi 三大定制文库从高通量sgRNA 文