所代表的产品适用于工业耐火材料应用。本数据表中的数值和应用信息仅供参考。给出的数值和信息受正常制造变化的影响,如有更改,恕不另行通知。摩根先进材料 - 热陶瓷不保证也不保证产品的适用性,您应寻求建议以确认产品是否适合与摩根先进材料一起使用。
建筑规模的增材制造 [1] 正在兴起,以扩大设计选择性并提高生产率。迄今为止,用于砂浆骨干建筑的材料挤出 AM 技术 [2] 势不可挡。砂浆是一种典型的非牛顿流体,特别是宾汉流体。在砂浆流动中,施加的应力应高于屈服应力,这会导致从弹性变形转变为粘性流动。此外,粘弹性行为取决于随时间变化的结构变化,这称为触变性 [3]。在材料挤出增材制造中,加工能力和零件健康度主要取决于砂浆原料的触变性。可泵送性、可挤出性、可粘合性和可施工性是关键性能属性 [4]。其中,在本研究中,通过改变新鲜砂浆原料中的水粘合剂比来评估可施工性。可施工性定义为在珠粒逐层堆叠时遇到的增量重力下维持覆盖珠粒形状的能力。在实际情况下,重力增量周期根据零件设计和构建策略而变化。较小的零件和更快的行进速度减少了垂直重叠的间隔时间。在间隔时间内,重叠的珠子处于静止状态,水分干燥和水合反应改变了内部结构。在这种情况下,竞争
食品安全是食品微生物学的重要组成部分,该食物安全着重于引起疾病的细菌及其毒素。这就是为什么了解与特定饮食相关的微生物的潜在贡献至关重要的原因。在本文中,我们比较了商用fufu磨机机,砂浆和杵的微生物组(细菌和真菌),该库伊糖酶(Ayeduase)是Kumasi的郊区。样品是从三个不同的位置进行的,用于Fufu研磨机和三个不同的位置,用于使用迫击炮和杵进行传统程序。在每个站点,每天工作两次,在工作开始之前和一天之后进行样本收集。从磨削位点收集的样品的编码为G1S1,G1S2,G2S1,G2S2,G3S1和G3S2,而从家庭中收集的样品则是T1S1,T1S2,T2S1,T2S2,T2S2,T3S1和T3S2的代码。使用标准的细菌学方法对所有分离株进行了形态学,生化表征和微观鉴定。来自Fufu研磨机的样品计数在7.5x10^11和2.73x10^12 Cfu/ml之间,而从迫击炮和杵获得的范围为2.5x10^11和1.96x10^12 cfu/ml。该结果表明,从磨砂机获得的样品与从迫击炮和瘟疫中获得的样品之间没有显着差异(p> 0.05)。所有29个用于细菌亚培养的纯培养物分离株都是革兰氏染色的革兰氏ram阳性。主要分离株是葡萄球菌sp。(65.5%),sp。(13.79%),链球菌sp。(10.34%)和芽孢杆菌(10.34%)。真菌形态和样品的识别也是根据标准识别键进行的。所鉴定的主要真菌属是毛植物,曲霉菌,镰刀菌,爆炸性,cladosporium和penicillium。This study also concluded that bacteria and fungi genera associated with commercial fufu grinding machines and mortars and pestles are Staphylococcus, Diplococcus, Streptococcus, Bacillus, Trichophyton, Aspergillus, Fusarium, Blastomyces, Cladosporium and Penicillium and that grinding machines have higher numbers of bacteria and fungi as compared to mortars and杵。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。
砂浆金属抹子顶部的聚酯装饰胶合板 EP-G 砂浆金属抹子顶部的聚酯装饰胶合板 EP-G 砂浆金属抹子顶部的聚酯装饰胶合板 EP-G 砂浆金属抹子顶部的聚酯装饰胶合板 EP-G
摘要。可以通过针对替代外加剂以及精确控制制造过程的多方面方法来促进建筑材料和与水泥和混凝土相关的工业过程的脱碳。减水化学外加剂在先进混凝土混合物的开发中发挥了至关重要的作用。为从玉米秸秆生物质生产航空燃料而开发的较新的生物质加工技术产生了更具反应性的木质素副产品,该副产品适合进行化学改性以模仿具有较小碳足迹的聚羧酸醚外加剂的性质。本研究考察了木质素基减水外加剂在用于 3D 打印的水泥浆和砂浆混合物中的使用。实验计划探索使用不同剂量的木质素基外加剂来生产具有适当挤出性和可建造性的 3D 打印样品。进行了流变学表征以确定各种混合物的流动曲线。最后,通过等温量热法监测水泥浆体的水化热,以评估木质素基掺合料对水泥水化过程的影响。本研究结果表明,使用生物质副产品(例如木质素基掺合料)具有巨大潜力,可以有效控制水泥基材料的新鲜状态性能。
最近几天,二氧化碳排放,成本和能源消耗的减少是全球城市国家的主要关注点。混凝土是主要的建筑材料,普通的波特兰水泥(OPC)是混凝土行业的主要粘合剂。OPC行业案件许多环境问题,例如二氧化碳排放和高能消耗。碱活化的糊状,砂浆和混凝土作为OPC的替代材料在混凝土生产中以较低的能量消耗和二氧化碳的排放而引入。在实验性中,评估了碱性激活溶液对二元混合碱活化砂浆新鲜和硬化特性的影响。废物材料(例如粉煤灰(FA)和地面喷火炉炉渣(GBF))与河岸合并,以准备砂浆样品。为激活混合物,将六个剂量的碱性激活剂溶液用于此目的。测试标本的结果表明,随着碱性溶液含量的增加,灰浆的流动性增强。用标本的砂浆制备了碱性溶液的比例为0.40,可在28天龄的时候获得最高的强度。对于所有准备好的碱激活的砂浆的标本,在弯曲,拉伸强度和抗压强度之间发现了良好的直接关系。
植物纤维与水泥基质的结合在材料新鲜状态和硬化状态下会产生不同的问题。一些研究建议用化学、物理或热处理方法处理植物纤维。这项研究的目的是通过使用无污染产品白醋来处理掺有短亚麻纤维的水泥砂浆,以改善其性能。选择这种天然处理方法是为了清洁纤维表面,部分去除已知会严重干扰材料在新鲜状态下的行为(尤其是在稠度和凝固时间方面)的非纤维素化合物。测试了两种处理的浸泡时间,分别为 2 小时和 24 小时。为了评估这种处理的效率,对处理过的纤维和原始纤维进行了拉伸、热和吸水测试。制备了不同的砂浆配方(对照砂浆、含有原始纤维的砂浆和含有处理过的纤维的砂浆),并在新鲜和硬化状态下进行了表征。结果表明,纤维的吸水率显著降低,平均拉伸强度增加。水泥复合材料的稠度、初凝时间和机械性能等方面的性能也得到了改善。